📄 gibbs_sampling_inf_engine.m
字号:
function engine = gibbs_sampling_inf_engine(bnet, varargin)% GIBBS_SAMPLING_INF_ENGINE%% engine = gibbs_sampling_inf_engine(bnet, ...) %% Optional parameters [default in brackets]% 'burnin' - How long before you start using the samples [100].% 'gap' - how often you use the samples in the estimate [1].% 'T' - number of samples [1000]% i.e, number of node flips (so, for% example if there are 10 nodes in the bnet, and T is 1000, each% node will get flipped 100 times (assuming a deterministic schedule)) % The total running time is proportional to burnin + T*gap.%% 'order' - if the sampling schedule is deterministic, use this% parameter to specify the order in which nodes are sampled.% Order is allowed to include multiple copies of nodes, which is% useful if you want to, say, focus sampling on particular nodes.% Default is to use a deterministic schedule that goes through the% nodes in order.%% 'sampling_dist' - when using a stochastic sampling method, at% each step the node to sample is chosen according to this% distribution (may be unnormalized)% % The sampling_dist and order parameters shouldn't both be used,% and this will cause an assert.%%% Written by "Bhaskara Marthi" <bhaskara@cs.berkeley.edu> Feb 02.engine.burnin = 100;engine.gap = 1;engine.T = 1000; use_default_order = 1;engine.deterministic = 1;engine.order = {};engine.sampling_dist = {};if nargin >= 2 args = varargin; nargs = length(args); for i = 1:2:nargs switch args{i} case 'burnin' engine.burnin = args{i+1}; case 'gap' engine.gap = args{i+1}; case 'T' engine.T = args{i+1}; case 'order' assert (use_default_order); use_default_order = 0; engine.order = args{i+1}; case 'sampling_dist' assert (use_default_order); use_default_order = 0; engine.deterministic = 0; engine.sampling_dist = args{i+1}; otherwise error(['unrecognized parameter to gibbs_sampling_inf_engine']); end endendengine.slice_size = size(bnet.dag, 2);if (use_default_order) engine.order = 1:engine.slice_size;endengine.hnodes = [];engine.onodes = [];engine.evidence = [];engine.state = [];engine.marginal_counts = {};% Precompute the strides for each CPTengine.strides = compute_strides(bnet);% Precompute graphical informationengine.families = compute_families(bnet);engine.children = compute_children(bnet);% For convenience, store the CPTs as tables rather than objectsengine.CPT = get_cpts(bnet);engine = class(engine, 'gibbs_sampling_inf_engine', inf_engine(bnet));
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -