📄 convert_to_pot.m
字号:
function pot = convert_to_pot(CPD, pot_type, domain, evidence)
% CONVERT_TO_POT Convert a discrete CPD to a potential
% pot = convert_to_pot(CPD, pot_type, domain, evidence)
%
% pots = CPD evaluated using evidence(domain)
ncases = size(domain,2);
assert(ncases==1); % not yet vectorized
sz = dom_sizes(CPD);
ns = zeros(1, max(domain));
ns(domain) = sz;
CPT1 = CPD_to_CPT(CPD);
spar = issparse(CPT1);
odom = domain(~isemptycell(evidence(domain)));
if spar
T = convert_to_sparse_table(CPD, domain, evidence);
else
T = convert_to_table(CPD, domain, evidence);
end
switch pot_type
case 'u',
pot = upot(domain, sz, T, 0*myones(sz));
case 'd',
ns(odom) = 1;
pot = dpot(domain, ns(domain), T);
case {'c','g'},
% Since we want the output to be a Gaussian, the whole family must be observed.
% In other words, the potential is really just a constant.
p = T;
%p = prob_node(CPD, evidence(domain(end)), evidence(domain(1:end-1)));
ns(domain) = 0;
pot = cpot(domain, ns(domain), log(p));
case 'cg',
T = T(:);
ns(odom) = 1;
can = cell(1, length(T));
for i=1:length(T)
can{i} = cpot([], [], log(T(i)));
end
pot = cgpot(domain, [], ns, can);
case 'scg'
T = T(:);
ns(odom) = 1;
pot_array = cell(1, length(T));
for i=1:length(T)
pot_array{i} = scgcpot([], [], T(i));
end
pot = scgpot(domain, [], [], ns, pot_array);
otherwise,
error(['unrecognized pot type ' pot_type])
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -