📄 maximize_params.m
字号:
function CPD = maximize_params(CPD, temp)
% MAXIMIZE_PARAMS Set the params of a CPD to their ML values (dsoftmax) using IRLS
% CPD = maximize_params(CPD, temperature)
% temperature parameter is ignored
% Written by Pierpaolo Brutti
if ~adjustable_CPD(CPD), return; end
options = foptions;
if CPD.verbose
options(1) = 1;
else
options(1) = -1;
end
%options(1) = CPD.verbose;
options(2) = CPD.wthresh;
options(3) = CPD.llthresh;
options(5) = CPD.approx_hess;
options(14) = CPD.max_iter;
dpsize = size(CPD.self_vals,3);
for i=1:dpsize,
mask=find(CPD.eso_weights(:,:,i)>0); % for adapting the parameters we use only positive weighted example
if ~isempty(mask),
if ~isempty(CPD.dps_as_cps.ndx),
puredp_map = find_equiv_posns(CPD.dpndx, union(CPD.dpndx, CPD.dps_as_cps.ndx)); % find the glm structure
subs = ind2subv(CPD.sizes(union(CPD.dpndx, CPD.dps_as_cps.ndx)),i); % that corrisponds to the
active_glm = max([1,subv2ind(CPD.sizes(CPD.dpndx), subs(puredp_map))]); % i-th 'fictitious' example
CPD.glim{active_glm} = netopt_weighted(CPD.glim{active_glm}, options, CPD.parent_vals(mask',:,i),...
CPD.self_vals(mask',:,i), CPD.eso_weights(mask',:,i), 'scg');
else
alfa = 0.4; if CPD.solo, alfa = 1; end % learning step = 1 <=> self is all alone in the net
CPD.glim{i} = glmtrain_weighted(CPD.glim{i}, options, CPD.parent_vals(mask',:),...
CPD.self_vals(mask',:,i), CPD.eso_weights(mask',:,i), alfa);
end
end
mask=[];
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -