⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 softmax_cpd.m

📁 贝叶斯算法(matlab编写) 安装,添加目录 /home/ai2/murphyk/matlab/FullBNT
💻 M
字号:
function CPD = softmax_CPD(bnet, self, varargin)% SOFTMAX_CPD Make a softmax (multinomial logit) CPD%% To define this CPD precisely, let W be an (m x n) matrix with W(i,:) = {i-th row of B} % => we can define the following vectorial function:%    %                                   softmax: R^n |--> R^m  %                  softmax(z,i-th)=exp(W(i,:)*z)/sum_k(exp(W(k,:)*z))      %% (this constructor augments z with a one at the beginning to introduce an offset term (=bias, intercept))                                   % Now call the continuous (cts) and always observed (obs) parents X,% the discrete parents (if any) Q, and this node Y then we use the discrete parent(s) just  to index% the parameter vectors (c.f., conditional Gaussian nodes); that is:%                 prob(Y=i | X=x, Q=j) = softmax(x,i-th|j)% where '|j' means that we are using the j-th (m x n) parameters matrix W(:,:,j).% If there are no discrete parents, this is a regular softmax node.% If Y is binary, this is a logistic (sigmoid) function.%% CPD = softmax_CPD(bnet, node_num, ...) will create a softmax CPD with random parameters,% where node is the number of a node in this equivalence class.%% The following optional arguments can be specified in the form of name/value pairs:% [default value in brackets]% (Let ns(i) be the size of node i, X = ns(X), Y = ns(Y), Q1=ns(dps(1)), Q2=ns(dps(2)), ...% where dps are the discrete parents; if there are no discrete parents, we set Q1=1.)%% discrete - the discrete parents that we want to treat like the cts ones [ [] ]. %            This can be used to define sigmoid belief network - see below the reference.             %            For example suppose that Y has one cts parents X and two discrete ones: Q, C1 where:%            -> Q is binary (1/2) and used just to index the parameters of 'self'%            -> C1 is ternary (1/2/3) and treated as a cts node <=> its values appear into the linear %               part of the softmax function%            then:%                     prob(Y|X=x, Q=q, C1=c1)= softmax(W(:,:,q)' * y)%            where y = [1 | delta(C1,1) delta(C1,2) delta(C1,3) | x(:)']' and delta(Y,a)=indicator(Y=a).% weights - (w(:,j,a,b,...) - w(:,j',a,b,...)) is ppn to dec. boundary%           between j,j' given Q1=a,Q2=b,... [ randn(X,Y,Q1,Q2,...) ]% offset  - (b(j,a,b,...) - b(j',a,b,...)) is the offset to dec. boundary%           between j,j' given Q1=a,Q2=b,... [ randn(Y,Q1,Q2,...) ]%% e.g., CPD = softmax_CPD(bnet, i, 'offset', zeros(ns(i),1));%% The following fields control the behavior of the M step, which uses % a weighted version of the Iteratively Reweighted Least Squares (WIRLS) if dps_as_cps=[]; or% a weighted SCG otherwise, as implemented in Netlab, and modified by Pierpaolo Brutti.%% clamped     - 'yes' means don't adjust params during learning ['no']% max_iter    - the maximum number of steps to take [10]% verbose     - 'yes' means print the LL at each step of IRLS ['no']% wthresh     - convergence threshold for weights [1e-2]% llthresh    - convergence threshold for log likelihood [1e-2]% approx_hess - 'yes' means approximate the Hessian for speed ['no']%% For backwards compatibility with BNT2, you can also specify the parameters in the following order%   softmax_CPD(bnet, self, w, b, clamped, max_iter, verbose, wthresh, llthresh, approx_hess)%% REFERENCE% For details on the sigmoid belief nets, see:% - Neal (1992). Connectionist learning of belief networks, Artificial Intelligence, 56, 71-113.% - Saul, Jakkola, Jordan (1996). Mean field theory for sigmoid belief networks, Journal of Artificial Intelligence Reseach (4), pagg. 61-76.%% For details on the M step, see:% - K. Chen, L. Xu, H. Chi (1999). Improved learning algorithms for mixtures of experts in multiclass %       classification. Neural Networks 12, pp. 1229-1252.% - M.I. Jordan, R.A. Jacobs (1994). Hierarchical Mixtures of Experts and the EM algorithm. %       Neural Computation 6, pp. 181-214.% - S.R. Waterhouse, A.J. Robinson (1994). Classification Using Hierarchical Mixtures of Experts. In Proc. IEEE%       Workshop on Neural Network for Signal Processing IV, pp. 177-186if nargin==0  % This occurs if we are trying to load an object from a file.  CPD = init_fields;  CPD = class(CPD, 'softmax_CPD', discrete_CPD(0, []));  return;elseif isa(bnet, 'softmax_CPD')  % This might occur if we are copying an object.  CPD = bnet;  return;endCPD = init_fields;assert(myismember(self, bnet.dnodes));ns = bnet.node_sizes;ps = parents(bnet.dag, self);dps = myintersect(ps, bnet.dnodes);cps = myintersect(ps, bnet.cnodes);clamped = 0;CPD = class(CPD, 'softmax_CPD', discrete_CPD(clamped, ns([ps self])));dps_as_cpssz = 0;dps_as_cps = [];% determine if any discrete parents are to be treated as ctsif nargin >= 3 & isstr(varargin{1}) % might have passed in 'discrete'  for i=1:2:length(varargin)    if strcmp(varargin{i}, 'discrete')      dps_as_cps = varargin{i+1};      assert(myismember(dps_as_cps, dps));      dps = mysetdiff(dps, dps_as_cps);         % put out the dps treated as cts      CPD.dps_as_cps.ndx = find_equiv_posns(dps_as_cps, ps);      CPD.dps_as_cps.separator = [0 cumsum(ns(dps_as_cps(1:end-1)))]; % concatenated dps_as_cps dims separators      dps_as_cpssz = sum(ns(dps_as_cps));      break;    end  endendassert(~isempty(union(cps, dps_as_cps)));   % It have to be at least a cts or a dps_as_cps parentsself_size = ns(self); cpsz = sum(ns(cps));  glimsz = prod(ns(dps));CPD.dpndx = find_equiv_posns(dps, ps);  % it contains only the indeces of the 'pure' dpsCPD.cpndx = find_equiv_posns(cps, ps);CPD.self  = self;CPD.solo  = (length(ns)<=2);CPD.sizes = bnet.node_sizes([ps self]);% set default paramsCPD.max_iter = 10;CPD.verbose = 0;CPD.wthresh = 1e-2;CPD.llthresh = 1e-2;CPD.approx_hess = 0;CPD.glim = cell(1,glimsz);for i=1:glimsz  CPD.glim{i} = glm(dps_as_cpssz + cpsz, self_size, 'softmax');endif nargin >= 3  args = varargin;  nargs = length(args);  if ~isstr(args{1})    %   softmax_CPD(bnet, self, w, b, clamped, max_iter, verbose, wthresh, llthresh, approx_hess)    if nargs >= 1 & ~isempty(args{1}), CPD = set_fields(CPD, 'weights', args{1}); end    if nargs >= 2 & ~isempty(args{2}), CPD = set_fields(CPD, 'offset', args{2});  end    if nargs >= 3 & ~isempty(args{3}), CPD = set_clamped(CPD, args{3});           end    if nargs >= 4 & ~isempty(args{4}), CPD.max_iter    = args{4}; end    if nargs >= 5 & ~isempty(args{5}), CPD.verbose     = args{5}; end    if nargs >= 6 & ~isempty(args{6}), CPD.wthresh     = args{6}; end    if nargs >= 7 & ~isempty(args{7}), CPD.llthresh   = args{7}; end    if nargs >= 8 & ~isempty(args{8}), CPD.approx_hess = args{8}; end  else    CPD = set_fields(CPD, args{:});  endend% sufficient statistics % Since dsoftmax is not in the exponential family, we must store all the raw data.CPD.parent_vals = [];         % X(l,:) = value of cts parents in l'th exampleCPD.self_vals = [];           % Y(l,:) = value of self in l'th exampleCPD.eso_weights=[];           % weights used by the WIRLS algorithm% For BICCPD.nsamples = 0;   if ~adjustable_CPD(CPD),   CPD.nparams=0;else   [W, b] = extract_params(CPD);   CPD.nparams= prod(size(W)) + prod(size(b));end%%%%%%%%%%%function CPD = init_fields()% This ensures we define the fields in the same order % no matter whether we load an object from a file,% or create it from scratch. (Matlab requires this.)CPD.glim = {};CPD.self = [];CPD.solo = [];CPD.max_iter = [];CPD.verbose = [];CPD.wthresh = [];CPD.llthresh = [];CPD.approx_hess = [];CPD.sizes = [];CPD.parent_vals = [];CPD.eso_weights=[];CPD.self_vals = [];CPD.nsamples = [];CPD.nparams = [];CPD.dpndx = [];CPD.cpndx = [];CPD.dps_as_cps.ndx = [];CPD.dps_as_cps.separator = [];

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -