⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 convert_to_pot.m

📁 贝叶斯算法(matlab编写) 安装,添加目录 /home/ai2/murphyk/matlab/FullBNT
💻 M
字号:
function pot = convert_to_pot(CPD, pot_type, domain, evidence)% CONVERT_TO_POT Convert a softmax CPD to a potential% pots = convert_to_pot(CPD, pot_type, domain, evidence)%% pots = CPD evaluated using evidence(domain)ncases = size(domain,2);assert(ncases==1); % not yet vectorizedsz = dom_sizes(CPD);ns = zeros(1, max(domain));ns(domain) = sz;odom = domain(~isemptycell(evidence(domain)));T = convert_to_table(CPD, domain, evidence);switch pot_type case 'u',  pot = upot(domain, sz, T, 0*myones(sz));   case 'd',  ns(odom) = 1;  pot = dpot(domain, ns(domain), T);            case {'c','g'},  % Since we want the output to be a Gaussian, the whole family must be observed.  % In other words, the potential is really just a constant.  p = T;  %p = prob_node(CPD, evidence(domain(end)), evidence(domain(1:end-1)));  ns(domain) = 0;  pot = cpot(domain, ns(domain), log(p));         case 'cg',  T = T(:);  ns(odom) = 1;  can = cell(1, length(T));  for i=1:length(T)    can{i} = cpot([], [], log(T(i)));  end  ps = domain(1:end-1);  dps = ps(CPD.dpndx);  cps = ps(CPD.cpndx);  ddom = [dps CPD.self];  cdom = cps;  pot = cgpot(ddom, cdom, ns, can);      case 'scg'  T = T(:);  ns(odom) = 1;  pot_array = cell(1, length(T));  for i=1:length(T)    pot_array{i} = scgcpot([], [], T(i));  end  pot = scgpot(domain, [], [], ns, pot_array);    otherwise,  error(['unrecognized pot type ' pot_type])end

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -