📄 gmux_cpd.m
字号:
function CPD = gmux_CPD(bnet, self, varargin)% GMUX_CPD Make a Gaussian multiplexer node%% CPD = gmux_CPD(bnet, node, ...) is used similarly to gaussian_CPD,% except we assume there is exactly one discrete parent (call it M)% which is used to select which cts parent to pass through to the output.% i.e., we define P(Y=y|M=m, X1, ..., XK) = N(y | W(m)*x(m) + mu(m), Sigma(m))% where Y represents this node, and the Xi's are the cts parents.% All the Xi must have the same size, and the num values for M must be K.%% Currently the params for this kind of CPD cannot be learned.%% Optional arguments [ default in brackets ]%% mean - mu(:,i) is the mean given M=i [ zeros(Y,K) ]% cov - Sigma(:,:,i) is the covariance given M=i [ repmat(1*eye(Y,Y), [1 1 K]) ]% weights - W(:,:,i) is the regression matrix given M=i [ randn(Y,X,K) ]if nargin==0 % This occurs if we are trying to load an object from a file. CPD = init_fields; clamp = 0; CPD = class(CPD, 'gmux_CPD', generic_CPD(clamp)); return;elseif isa(bnet, 'gmux_CPD') % This might occur if we are copying an object. CPD = bnet; return;endCPD = init_fields; CPD = class(CPD, 'gmux_CPD', generic_CPD(1));ns = bnet.node_sizes;ps = parents(bnet.dag, self);dps = myintersect(ps, bnet.dnodes);cps = myintersect(ps, bnet.cnodes);fam_sz = ns([ps self]);CPD.self = self;CPD.sizes = fam_sz;% Figure out which (if any) of the parents are discrete, and which cts, and how big they are% dps = discrete parents, cps = cts parentsCPD.cps = find_equiv_posns(cps, ps); % cts parent indexCPD.dps = find_equiv_posns(dps, ps);if length(CPD.dps) ~= 1 error('gmux must have exactly 1 discrete parent')endss = fam_sz(end);cpsz = fam_sz(CPD.cps(1)); % in gaussian_CPD, cpsz = sum(fam_sz(CPD.cps))if ~all(fam_sz(CPD.cps) == cpsz) error('all cts parents must have same size')enddpsz = fam_sz(CPD.dps);if dpsz ~= length(cps) error(['the arity of the mux node is ' num2str(dpsz) ... ' but there are ' num2str(length(cps)) ' cts parents']);end% set default params%CPD.mean = zeros(ss, 1);%CPD.cov = eye(ss);%CPD.weights = randn(ss, cpsz);CPD.mean = zeros(ss, dpsz);CPD.cov = 1*repmat(eye(ss), [1 1 dpsz]); CPD.weights = randn(ss, cpsz, dpsz);args = varargin;nargs = length(args);for i=1:2:nargs switch args{i}, case 'mean', CPD.mean = args{i+1}; case 'cov', CPD.cov = args{i+1}; case 'weights', CPD.weights = args{i+1}; otherwise, error(['invalid argument name ' args{i}]); endend%%%%%%%%%%%function CPD = init_fields()% This ensures we define the fields in the same order % no matter whether we load an object from a file,% or create it from scratch. (Matlab requires this.)CPD.self = [];CPD.sizes = [];CPD.cps = [];CPD.dps = [];CPD.mean = [];CPD.cov = [];CPD.weights = [];
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -