📄 learn_params.m
字号:
best_attr=0; %the attribute with the max_gainbest_split = []; %the split of T according to the value of best_attrcur_best_threshhold = 0; %the threshhold for split continuous attributebest_threshhold=0;% compute Info(T) (for discrete output)if (output_type == 0) class_split_T = split_cases(fam_ev,node_sizes,node_types,T,size(fam_ev,1),0); %split cases according to class info_T = compute_info (fam_ev, T, class_split_T);else % compute R(T) (for cts output)% N = size(fam_ev,2);% cases_T = fam_ev(size(fam_ev,1),T); %get the output value for cases T% std_T = std(cases_T);% avg_y_T = mean(cases_T); sqr_T = cases_T - avg_y_T; R_T = sum(sqr_T.*sqr_T)/N; % get R(T) = 1/N * SUM(y-avg_y)^2 info_T = R_T;endfor i=1:(size_fam-1) if (myismember(i,candidate_attrs)) %if this attribute still in the candidate attribute set if (node_types(i)==0) %discrete attibute split_T = split_cases(fam_ev,node_sizes,node_types,T,i,0); %split cases according to value of attribute i % For cts output, we compute the least square gain. % For discrete output, we compute gain ratio cur_gain = compute_gain(fam_ev,node_sizes,node_types,T,info_T,i,split_T,0,output_type); %gain ratio else %cts attribute %get the values of this attribute ev = fam_ev(:,T); values = ev(i,:); sort_v = sort(values); %remove the duplicate values in sort_v v_set = unique(sort_v); best_gain = 0; best_threshhold = 0; best_split1 = []; %find the best split for this cts attribute % see "Quilan 96: Improved Use of Continuous Attributes in C4.5" for j=1:(size(v_set,2)-1) mid_v = (v_set(j)+v_set(j+1))/2; split_T = split_cases(fam_ev,node_sizes,node_types,T,i,mid_v); %split cases according to value of attribute i (<=mid_v) % For cts output, we compute the least square gain. % For discrete output, we use Quilan 96: use information gain instead of gain ratio to select threshhold cur_gain = compute_gain(fam_ev,node_sizes,node_types,T,info_T,i,split_T,1,output_type); %if (i==6) % fprintf('gain %8.5f threshhold %6.3f spliting %d\n', cur_gain, mid_v, size(split_T{1},2)); %end if (best_gain < cur_gain) best_gain = cur_gain; best_threshhold = mid_v; %best_split1 = split_T; %here we need to copy array, not good!!! (maybe we can compute after we get best_attr end end %recalculate the gain_ratio of the best_threshhold split_T = split_cases(fam_ev,node_sizes,node_types,T,i,best_threshhold); best_gain = compute_gain(fam_ev,node_sizes,node_types,T,info_T,i,split_T,0,output_type); %gain_ratio if (output_type==0) %for discrete output cur_gain = best_gain-log2(size(v_set,2)-1)/size_t; % Quilan 96: use the gain_ratio-log2(N-1)/|D| as the gain of this attr else %for cts output cur_gain = best_gain; end end if (max_gain < cur_gain) max_gain = cur_gain; best_attr = i; cur_best_threshhold=best_threshhold; %save the threshhold %best_split = split_T; %here we need to copy array, not good!!! So we will recalculate in below line 313 end endend% stop splitting if gain is too smallif (max_gain==0 | (output_type==0 & max_gain < min_gain) | (output_type==1 & max_gain < cts_min_gain)) if (output_type==0) tree.nodes(tree.num_node).probs=class_freqs/size_t; %the prob for each value of class node tree.nodes(tree.num_node).error.all_error=1-top1_class_cases/size_t; tree.nodes(tree.num_node).error.all_error_num=size_t - top1_class_cases; fprintf('Create leaf node(nogain) %d. Class %d Cases %d Error %d \n',tree.num_node, top1_class, size_t, size_t - top1_class_cases ); else fprintf('Create leaf node(nogain) %d. Mean %8.4f Std %8.4f Cases %d \n',tree.num_node, avg_y_T, std_T, size_t); end return;end%get the split of cases according to the best split attributeif (node_types(best_attr)==0) %discrete attibute best_split = split_cases(fam_ev,node_sizes,node_types,T,best_attr,0); else best_split = split_cases(fam_ev,node_sizes,node_types,T,best_attr,cur_best_threshhold);end %(4) best_attr = AttributeWithBestGain;%(5) if best_attr is continuous ???? why need this? maybe the value in the decision tree must appeared in data% find threshhold in all cases that <= max_V% change the split of Ttree.nodes(tree.num_node).split_id=best_attr;tree.nodes(tree.num_node).split_threshhold=cur_best_threshhold; %for cts attribute only%note: below threshhold rejust is linera search, so it is slow. A better method is described in paper "Efficient C4.5"%if (output_type==0)if (node_types(best_attr)==1) %is a continuous attribute %find the value that approximate best_threshhold from below (the largest that <= best_threshhold) best_value=0; for i=1:size(fam_ev,2) %note: need to search in all cases for all tree, not just in cases for this node val = fam_ev(best_attr,i); if (val <= cur_best_threshhold & val > best_value) %val is more clear to best_threshhold best_value=val; end end tree.nodes(tree.num_node).split_threshhold=best_value; %for cts attribute onlyend%end if (output_type == 0) fprintf('Create node %d split at %d gain %8.4f Th %d. Class %d Cases %d Error %d \n',tree.num_node, best_attr, max_gain, tree.nodes(tree.num_node).split_threshhold, top1_class, size_t, size_t - top1_class_cases );else fprintf('Create node %d split at %d gain %8.4f Th %d. Mean %8.4f Cases %d\n',tree.num_node, best_attr, max_gain, tree.nodes(tree.num_node).split_threshhold, avg_y_T, size_t );end %(6) Foreach T' in the split_T% if T' is Empty% Child of node_id is a leaf% else% Child of node_id = split_tree (T')tree.nodes(new_node).is_leaf=0; %because this node will be split, it is not leaf nowfor i=1:size(best_split,2) if (size(best_split{i},2)==0) %T(i) is empty %create one new leaf node tree.num_node=tree.num_node+1; tree.nodes(tree.num_node).used=1; %flag this node is used (0 means node not used, it will be removed from tree at last to save memory) tree.nodes(tree.num_node).is_leaf=1; tree.nodes(tree.num_node).children=[]; tree.nodes(tree.num_node).split_id=0; tree.nodes(tree.num_node).split_threshhold=0; if (output_type == 0) tree.nodes(tree.num_node).probs=zeros(1,num_cat); %the prob for each value of class node tree.nodes(tree.num_node).probs(top1_class)=1; %use the majority class of parent node, like for binary class, %and majority is class 2, then the CPT is [0 1] %we may need to use prior to do smoothing, to get [0.001 0.999] tree.nodes(tree.num_node).error.self_error=0; tree.nodes(tree.num_node).error.all_error=0; tree.nodes(tree.num_node).error.all_error_num=0; else tree.nodes(tree.num_node).mean = avg_y_T; %just use parent node's mean value tree.nodes(tree.num_node).std = std_T; end %add the new leaf node to parents num_children=size(tree.nodes(new_node).children,2); tree.nodes(new_node).children(num_children+1)=tree.num_node; if (output_type==0) fprintf('Create leaf node(nullset) %d. %d-th child of Father %d Class %d\n',tree.num_node, i, new_node, top1_class ); else fprintf('Create leaf node(nullset) %d. %d-th child of Father %d \n',tree.num_node, i, new_node ); end else if (node_types(best_attr)==0) % if attr is discrete, it should be removed from the candidate set new_candidate_attrs = mysetdiff(candidate_attrs,[best_attr]); else new_candidate_attrs = candidate_attrs; end new_sub_node = split_dtree (CPD, fam_ev, node_sizes, node_types, stop_cases, min_gain, best_split{i}, new_candidate_attrs, num_cat); %tree.nodes(parent_id).error.all_error += tree.nodes(new_sub_node).error.all_error; fprintf('Add subtree node %d to %d. #nodes %d\n',new_sub_node,new_node, tree.num_node );% tree.nodes(new_node).error.all_error_num = tree.nodes(new_node).error.all_error_num + tree.nodes(new_sub_node).error.all_error_num; %add the new leaf node to parents num_children=size(tree.nodes(new_node).children,2); tree.nodes(new_node).children(num_children+1)=new_sub_node; endend %(7) Compute errors of N; for doing pruning% get the total error for the subtreeif (output_type==0) tree.nodes(new_node).error.all_error=tree.nodes(new_node).error.all_error_num/size_t;end%doing pruning, but doing here is not so efficient, because it is bottom up.%if tree.nodes()%after doing pruning, need to update the all_error to self_error%(8) Return N %(1) For discrete output, we use GainRatio defined as below% Gain(X,T)% GainRatio(X,T) = ----------% SplitInfo(X,T)% where% Gain(X,T) = Info(T) - Info(X,T)% |Ti|% Info(X,T) = Sum for i from 1 to n of ( ---- * Info(Ti))% |T| % SplitInfo(D,T) is the information due to the split of T on the basis% of the value of the categorical attribute D. Thus SplitInfo(D,T) is% I(|T1|/|T|, |T2|/|T|, .., |Tm|/|T|)% where {T1, T2, .. Tm} is the partition of T induced by the value of D.% Definition of Info(Ti)% If a set T of records is partitioned into disjoint exhaustive classes C1, C2, .., Ck on the basis of the % value of the categorical attribute, then the information needed to identify the class of an element of T % is Info(T) = I(P), where P is the probability distribution of the partition (C1, C2, .., Ck): % P = (|C1|/|T|, |C2|/|T|, ..., |Ck|/|T|)% Here I(P) is defined as% I(P) = -(p1*log(p1) + p2*log(p2) + .. + pn*log(pn))% %(2) For continuous output (regression tree), we use least squares score (adapted from Leo Breiman's book "Classification and regression trees", page 231% The original support only binary split, we further extend it to permit multiple-child split% % Delta_R = R(T) - Sum for all childe nodes Ti (R(Ti))% Where R(Ti)= 1/N * Sum for all cases i in node Ti ((yi - avg_y(Ti))^2)% here N is the number of all training cases for construct the regression tree% avg_y(Ti) is the average value for output variable for the cases in node Tifunction gain_score = compute_gain (fam_ev, node_sizes, node_types, T, info_T, attr_id, split_T, score_type, output_type)% COMPUTE_GAIN Compute the score for the split of cases T using attribute attr_id% gain_score = compute_gain (fam_ev, T, attr_id, node_size, method)%% fam_ev(i,j) is the value of attribute i in j-th training cases, the last row is for the class label (self_ev)% T(i) is the index of i-th cases in current decision tree node, we need split it further% attr_id is the index of current node considered for a split% split_T{i} is the i_th subset in partition of cases T according to the value of attribute attr_id% score_type if 0, is gain ratio, 1 is information gain (only apply to discrete output)% node_size(i) the node size of i-th node in the family% output_type: 0 means discrete output, 1 means continuous output.gain_score=0;% ***********for DISCRETE output*******************************************************if (output_type == 0) % compute Info(T) total_cnt = size(T,2); if (total_cnt==0) return; end; %class_split_T = split_cases(fam_ev,node_sizes,node_types,T,size(fam_ev,1),0); %split cases according to class %info_T = compute_info (fam_ev, T, class_split_T); % compute Info(X,T) num_class = size(split_T,2); subset_sizes = zeros(1,num_class); info_ti = zeros(1,num_class); for i=1:num_class subset_sizes(i)=size(split_T{i},2); if (subset_sizes(i)~=0) class_split_Ti = split_cases(fam_ev,node_sizes,node_types,split_T{i},size(fam_ev,1),0); %split cases according to class info_ti(i) = compute_info(fam_ev, split_T{i}, class_split_Ti); end end ti_ratios = subset_sizes/total_cnt; %get the |Ti|/|T| info_X_T = sum(ti_ratios.*info_ti); %get Gain(X,T) gain_X_T = info_T - info_X_T; if (score_type == 1) %information gain gain_score=gain_X_T; return; end %compute the SplitInfo(X,T) //is this also for cts attr, only split into two subsets splitinfo_T = compute_info (fam_ev, T, split_T); if (splitinfo_T~=0) gain_score = gain_X_T/splitinfo_T; end% ************for continuous output**************************************************else N = size(fam_ev,2); % compute R(Ti) num_class = size(split_T,2); R_Ti = zeros(1,num_class); for i=1:num_class if (size(split_T{i},2)~=0) cases_T = fam_ev(size(fam_ev,1),split_T{i}); avg_y_T = mean(cases_T); sqr_T = cases_T - avg_y_T; R_Ti(i) = sum(sqr_T.*sqr_T)/N; % get R(Ti) = 1/N * SUM(y-avg_y)^2 end end %delta_R = R(T) - SUM(R(Ti)) gain_score = info_T - sum(R_Ti);end% Definition of Info(Ti)% If a set T of records is partitioned into disjoint exhaustive classes C1, C2, .., Ck on the basis of the % value of the categorical attribute, then the information needed to identify the class of an element of T % is Info(T) = I(P), where P is the probability distribution of the partition (C1, C2, .., Ck): % P = (|C1|/|T|, |C2|/|T|, ..., |Ck|/|T|)% Here I(P) is defined as% I(P) = -(p1*log(p1) + p2*log(p2) + .. + pn*log(pn))function info = compute_info (fam_ev, T, split_T)% COMPUTE_INFO compute the information for the split of T into split_T% info = compute_info (fam_ev, T, split_T)total_cnt = size(T,2);num_class = size(split_T,2);subset_sizes = zeros(1,num_class);probs = zeros(1,num_class);log_probs = zeros(1,num_class);for i=1:num_class subset_sizes(i)=size(split_T{i},2);end probs = subset_sizes/total_cnt;%log_probs = log2(probs); % if probs(i)=0, the log2(probs(i)) will be Inffor i=1:size(probs,2) if (probs(i)~=0) log_probs(i)=log2(probs(i)); endendinfo = sum(-(probs.*log_probs));
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -