📄 cpd_to_lambda_msg.m
字号:
function lam_msg = CPD_to_lambda_msg(CPD, msg_type, n, ps, msg, p, evidence)
% CPD_TO_LAMBDA_MSG Compute lambda message (gaussian)
% lam_msg = compute_lambda_msg(CPD, msg_type, n, ps, msg, p, evidence)
% Pearl p183 eq 4.52
switch msg_type
case 'd',
error('gaussian_CPD can''t create discrete msgs')
case 'g',
cps = ps(CPD.cps);
cpsizes = CPD.sizes(CPD.cps);
self_size = CPD.sizes(end);
i = find_equiv_posns(p, cps); % p is n's i'th cts parent
psz = cpsizes(i);
if all(msg{n}.lambda.precision == 0) % no info to send on
lam_msg.precision = zeros(psz, psz);
lam_msg.info_state = zeros(psz, 1);
return;
end
[m, Q, W] = gaussian_CPD_params_given_dps(CPD, [ps n], evidence);
Bmu = m;
BSigma = Q;
for k=1:length(cps) % only get pi msgs from cts parents
pk = cps(k);
if pk ~= p
%bk = block(k, cpsizes);
bk = CPD.cps_block_ndx{k};
Bk = W(:, bk);
m = msg{n}.pi_from_parent{k};
BSigma = BSigma + Bk * m.Sigma * Bk';
Bmu = Bmu + Bk * m.mu;
end
end
% BSigma = Q + sum_{k \neq i} B_k Sigma_k B_k'
%bi = block(i, cpsizes);
bi = CPD.cps_block_ndx{i};
Bi = W(:,bi);
P = msg{n}.lambda.precision;
if (rcond(P) > 1e-3) | isinf(P)
if isinf(P) % Y is observed
Sigma_lambda = zeros(self_size, self_size); % infinite precision => 0 variance
mu_lambda = msg{n}.lambda.mu; % observed_value;
else
Sigma_lambda = inv(P);
mu_lambda = Sigma_lambda * msg{n}.lambda.info_state;
end
C = inv(Sigma_lambda + BSigma);
lam_msg.precision = Bi' * C * Bi;
lam_msg.info_state = Bi' * C * (mu_lambda - Bmu);
else
% method that uses matrix inversion lemma to avoid inverting P
A = inv(P + inv(BSigma));
C = P - P*A*P;
lam_msg.precision = Bi' * C * Bi;
D = eye(self_size) - P*A;
z = msg{n}.lambda.info_state;
lam_msg.info_state = Bi' * (D*z - D*P*Bmu);
end
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -