⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 maximize_params.m

📁 贝叶斯算法(matlab编写) 安装,添加目录 /home/ai2/murphyk/matlab/FullBNT
💻 M
字号:
function CPD = maximize_params(CPD, temp)% MAXIMIZE_PARAMS Set the params of a CPD to their ML values (Gaussian)% CPD = maximize_params(CPD, temperature)%% Temperature is currently only used for entropic prior on Sigma% For details, see "Fitting a Conditional Gaussian Distribution", Kevin Murphy, tech. report,% 1998, available at www.cs.berkeley.edu/~murphyk/papers.html% Refering to table 2, we use equations 1/2 to estimate the covariance matrix in the untied/tied case,% and equation 9 to estimate the weight matrix and mean.% We do not implement spherical Gaussians - the code is already pretty complicated!if ~adjustable_CPD(CPD), return; end%assert(approxeq(CPD.nsamples, sum(CPD.Wsum)));assert(~any(isnan(CPD.WXXsum)))assert(~any(isnan(CPD.WXYsum)))assert(~any(isnan(CPD.WYYsum)))[self_size cpsize dpsize] = size(CPD.weights);% Append 1s to the parents, and derive the corresponding cross products.% This is used when estimate the means and weights simultaneosuly,% and when estimatting Sigma.% Let x2 = [x 1]'XY = zeros(cpsize+1, self_size, dpsize); % XY(:,:,i) = sum_l w(l,i) x2(l) y(l)' XX = zeros(cpsize+1, cpsize+1, dpsize); % XX(:,:,i) = sum_l w(l,i) x2(l) x2(l)' YY = zeros(self_size, self_size, dpsize); % YY(:,:,i) = sum_l w(l,i) y(l) y(l)' for i=1:dpsize  XY(:,:,i) = [CPD.WXYsum(:,:,i) % X*Y	       CPD.WYsum(:,i)']; % 1*Y  % [x  * [x' 1]  = [xx' x  %  1]              x'  1]  XX(:,:,i) = [CPD.WXXsum(:,:,i) CPD.WXsum(:,i);	       CPD.WXsum(:,i)'   CPD.Wsum(i)];  YY(:,:,i) = CPD.WYYsum(:,:,i);endw = CPD.Wsum(:);% Set any zeros to one before dividing% This is valid because w(i)=0 => WYsum(:,i)=0, etcw = w + (w==0);if CPD.clamped_mean  % Estimating B2 and then setting the last column (the mean) to the clamped mean is *not* equivalent  % to estimating B and then adding the clamped_mean to the last column.  if ~CPD.clamped_weights    B = zeros(self_size, cpsize, dpsize);    for i=1:dpsize      if det(CPD.WXXsum(:,:,i))==0	B(:,:,i) = 0;      else	% Eqn 9 in table 2 of TR	%B(:,:,i) = CPD.WXYsum(:,:,i)' * inv(CPD.WXXsum(:,:,i));	B(:,:,i) = (CPD.WXXsum(:,:,i) \ CPD.WXYsum(:,:,i))';      end    end    %CPD.weights = reshape(B, [self_size cpsize dpsize]);    CPD.weights = B;  endelseif CPD.clamped_weights % KPM 1/25/02  if ~CPD.clamped_mean % ML estimate is just sample mean of the residuals    for i=1:dpsize      CPD.mean(:,i) = (CPD.WYsum(:,i) - CPD.weights(:,:,i) * CPD.WXsum(:,i)) / w(i);    end  endelse % nothing is clamped, so estimate mean and weights simultaneously  B2 = zeros(self_size, cpsize+1, dpsize);  for i=1:dpsize    if det(XX(:,:,i))==0  % fix by U. Sondhauss 6/27/99      B2(:,:,i)=0;              else                          % Eqn 9 in table 2 of TR      %B2(:,:,i) = XY(:,:,i)' * inv(XX(:,:,i));      B2(:,:,i) = (XX(:,:,i) \ XY(:,:,i))';    end                       CPD.mean(:,i) = B2(:,cpsize+1,i);    CPD.weights(:,:,i) = B2(:,1:cpsize,i);  endend% Let B2 = [W mu]if cpsize>0  B2(:,1:cpsize,:) = reshape(CPD.weights, [self_size cpsize dpsize]);endB2(:,cpsize+1,:) = reshape(CPD.mean, [self_size dpsize]);% To avoid singular covariance matrices,% we use the regularization method suggested in "A Quasi-Bayesian approach to estimating% parameters for mixtures of normal distributions", Hamilton 91.% If the ML estimate is Sigma = M/N, the MAP estimate is (M+gamma*I) / (N+gamma),% where gamma >=0 is a smoothing parameter (equivalent sample size of I prior)gamma = CPD.cov_prior_weight;if ~CPD.clamped_cov  if CPD.cov_prior_entropic % eqn 12 of Brand AI/Stat 99    Z = 1-temp;    % When temp > 1, Z is negative, so we are dividing by a smaller    % number, ie. increasing the variance.  else    Z = 0;  end  if CPD.tied_cov    S = zeros(self_size, self_size);    % Eqn 2 from table 2 in TR    for i=1:dpsize      S = S + (YY(:,:,i) - B2(:,:,i)*XY(:,:,i));    end    %denom = max(1, CPD.nsamples + gamma + Z);    denom = CPD.nsamples + gamma + Z;    S = (S + gamma*eye(self_size)) / denom;    if strcmp(CPD.cov_type, 'diag')      S = diag(diag(S));    end    CPD.cov = repmat(S, [1 1 dpsize]);  else     for i=1:dpsize            % Eqn 1 from table 2 in TR      S = YY(:,:,i) - B2(:,:,i)*XY(:,:,i);      %denom = max(1, w(i) + gamma + Z); % gives wrong answers on mhmm1      denom = w(i) + gamma + Z;      S = (S + gamma*eye(self_size)) / denom;      CPD.cov(:,:,i) = S;    end    if strcmp(CPD.cov_type, 'diag')      for i=1:dpsize      	CPD.cov(:,:,i) = diag(diag(CPD.cov(:,:,i)));      end    end  endendcheck_covars = 0;min_covar = 1e-5;if check_covars % prevent collapsing to a point  for i=1:dpsize    if min(svd(CPD.cov(:,:,i))) < min_covar      disp(['resetting singular covariance for node ' num2str(CPD.self)]);      CPD.cov(:,:,i) = CPD.init_cov(:,:,i);    end  endend

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -