📄 gaussian_cpd.m
字号:
function CPD = gaussian_CPD(bnet, self, varargin)% GAUSSIAN_CPD Make a conditional linear Gaussian distrib.%% CPD = gaussian_CPD(bnet, node, ...) will create a CPD with random parameters,% where node is the number of a node in this equivalence class.% To define this CPD precisely, call the continuous (cts) parents (if any) X,% the discrete parents (if any) Q, and this node Y. Then the distribution on Y is:% - no parents: Y ~ N(mu, Sigma)% - cts parents : Y|X=x ~ N(mu + W x, Sigma)% - discrete parents: Y|Q=i ~ N(mu(i), Sigma(i))% - cts and discrete parents: Y|X=x,Q=i ~ N(mu(i) + W(i) x, Sigma(i))%% The list below gives optional arguments [default value in brackets].% (Let ns(i) be the size of node i, X = ns(X), Y = ns(Y) and Q = prod(ns(Q)).)% Parameters will be reshaped to the right size if necessary.%% mean - mu(:,i) is the mean given Q=i [ randn(Y,Q) ]% cov - Sigma(:,:,i) is the covariance given Q=i [ repmat(100*eye(Y,Y), [1 1 Q]) ]% weights - W(:,:,i) is the regression matrix given Q=i [ randn(Y,X,Q) ]% cov_type - if 'diag', Sigma(:,:,i) is diagonal [ 'full' ]% tied_cov - if 1, we constrain Sigma(:,:,i) to be the same for all i [0]% clamp_mean - if 1, we do not adjust mu(:,i) during learning [0]% clamp_cov - if 1, we do not adjust Sigma(:,:,i) during learning [0]% clamp_weights - if 1, we do not adjust W(:,:,i) during learning [0]% cov_prior_weight - weight given to I prior for estimating Sigma [0.01]% cov_prior_entropic - if 1, we also use an entropic prior for Sigma [0]%% e.g., CPD = gaussian_CPD(bnet, i, 'mean', [0; 0], 'clamp_mean', 1)if nargin==0 % This occurs if we are trying to load an object from a file. CPD = init_fields; clamp = 0; CPD = class(CPD, 'gaussian_CPD', generic_CPD(clamp)); return;elseif isa(bnet, 'gaussian_CPD') % This might occur if we are copying an object. CPD = bnet; return;endCPD = init_fields; CPD = class(CPD, 'gaussian_CPD', generic_CPD(0));args = varargin;ns = bnet.node_sizes;ps = parents(bnet.dag, self);dps = myintersect(ps, bnet.dnodes);cps = myintersect(ps, bnet.cnodes);fam_sz = ns([ps self]);CPD.self = self;CPD.sizes = fam_sz;% Figure out which (if any) of the parents are discrete, and which cts, and how big they are% dps = discrete parents, cps = cts parentsCPD.cps = find_equiv_posns(cps, ps); % cts parent indexCPD.dps = find_equiv_posns(dps, ps);ss = fam_sz(end);psz = fam_sz(1:end-1);dpsz = prod(psz(CPD.dps));cpsz = sum(psz(CPD.cps));% set default paramsCPD.mean = randn(ss, dpsz);CPD.cov = 100*repmat(eye(ss), [1 1 dpsz]); CPD.weights = randn(ss, cpsz, dpsz);CPD.cov_type = 'full';CPD.tied_cov = 0;CPD.clamped_mean = 0;CPD.clamped_cov = 0;CPD.clamped_weights = 0;CPD.cov_prior_weight = 0.01;CPD.cov_prior_entropic = 0;nargs = length(args);if nargs > 0 CPD = set_fields(CPD, args{:});end% Make sure the matrices have 1 dimension per discrete parent.% Bug fix due to Xuejing Sun 3/6/01CPD.mean = myreshape(CPD.mean, [ss ns(dps)]);CPD.cov = myreshape(CPD.cov, [ss ss ns(dps)]);CPD.weights = myreshape(CPD.weights, [ss cpsz ns(dps)]);% Precompute indices into block structured matrices% to speed up CPD_to_lambda_msg and CPD_to_picpsizes = CPD.sizes(CPD.cps);CPD.cps_block_ndx = cell(1, length(cps));for i=1:length(cps) CPD.cps_block_ndx{i} = block(i, cpsizes);end%%%%%%%%%%% % Learning stuff% expected sufficient statistics CPD.Wsum = zeros(dpsz,1);CPD.WYsum = zeros(ss, dpsz);CPD.WXsum = zeros(cpsz, dpsz);CPD.WYYsum = zeros(ss, ss, dpsz);CPD.WXXsum = zeros(cpsz, cpsz, dpsz);CPD.WXYsum = zeros(cpsz, ss, dpsz);% For BICCPD.nsamples = 0;switch CPD.cov_type case 'full', ncov_params = ss*(ss-1)/2; % since symmetric (and positive definite) case 'diag', ncov_params = ss; otherwise error(['unrecognized cov_type ' cov_type]);end% params = weights + mean + covif CPD.tied_cov CPD.nparams = ss*cpsz*dpsz + ss*dpsz + ncov_params;else CPD.nparams = ss*cpsz*dpsz + ss*dpsz + dpsz*ncov_params;end% for speeding up maximize_paramsCPD.useC = exist('rep_mult');clamped = CPD.clamped_mean & CPD.clamped_cov & CPD.clamped_weights;CPD = set_clamped(CPD, clamped);%%%%%%%%%%%function CPD = init_fields()% This ensures we define the fields in the same order % no matter whether we load an object from a file,% or create it from scratch. (Matlab requires this.)CPD.self = [];CPD.sizes = [];CPD.cps = [];CPD.dps = [];CPD.mean = [];CPD.cov = [];CPD.weights = [];CPD.clamped_mean = [];CPD.clamped_cov = [];CPD.clamped_weights = [];CPD.cov_type = [];CPD.tied_cov = [];CPD.Wsum = [];CPD.WYsum = [];CPD.WXsum = [];CPD.WYYsum = [];CPD.WXXsum = [];CPD.WXYsum = [];CPD.nsamples = [];CPD.nparams = []; CPD.cov_prior_weight = [];CPD.cov_prior_entropic = [];CPD.useC = [];CPD.cps_block_ndx = [];
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -