⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 log_prob_node.m

📁 贝叶斯算法(matlab编写) 安装,添加目录 /home/ai2/murphyk/matlab/FullBNT
💻 M
字号:
function L = log_prob_node(CPD, self_ev, pev)% LOG_PROB_NODE Compute prod_m log P(x(i,m)| x(pi_i,m), theta_i) for node i (gaussian)% L = log_prob_node(CPD, self_ev, pev)%% self_ev(m) is the evidence on this node in case m.% pev(i,m) is the evidence on the i'th parent in case m (if there are any parents).% (These may also be cell arrays.)if iscell(self_ev), usecell = 1; else usecell = 0; enduse_log = 1;ncases = length(self_ev);nparents = length(CPD.sizes)-1;assert(ncases == size(pev, 2));if ncases == 0  L = 0;  return;endL = 0;for m=1:ncases  if isempty(CPD.dps)    i = 1;  else    if usecell      dpvals = cat(1, pev{CPD.dps, m});    else      dpvals = pev(CPD.dps, m);    end    i = subv2ind(CPD.sizes(CPD.dps), dpvals(:)');  end  if usecell    y = self_ev{m};  else    y = self_ev(m);  end  if length(CPD.cps) == 0     L = L + gaussian_prob(y, CPD.mean(:,i), CPD.cov(:,:,i), use_log);  else    if usecell      x = cat(1, pev{CPD.cps, m});    else      x = pev(CPD.cps, m);    end    L = L + gaussian_prob(y, CPD.mean(:,i) + CPD.weights(:,:,i)*x, CPD.cov(:,:,i), use_log);  endend

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -