📄 bayes_update_params.m
字号:
function CPD = bayes_update_params(CPD, self_ev, pev)% UPDATE_PARAMS_COMPLETE Bayesian parameter updating given completely observed data (tabular)% CPD = update_params_complete(CPD, self_ev, pev)%% self_ev(m) is the evidence on this node in case m.% pev(i,m) is the evidence on the i'th parent in case m (if there are any parents).% These can be arrays or cell arrays.%% We update the Dirichlet pseudo counts and set the CPT to the mean of the posterior.if iscell(self_ev), usecell = 1; else usecell = 0; endncases = length(self_ev);sz = CPD.sizes;nparents = length(sz)-1;assert(nparents == size(pev,1));if ncases == 0 | ~adjustable_CPD(CPD) return;elseif ncases == 1 % speedup the sequential learning case by avoiding normalization of the whole array if usecell x = cat(1, pev{:})'; y = self_ev{1}; else x = pev(:)'; y = self_ev; end switch nparents case 0, CPD.dirichlet(y) = CPD.dirichlet(y)+1; CPD.CPT = CPD.dirichlet / sum(CPD.dirichlet); case 1, CPD.dirichlet(x(1), y) = CPD.dirichlet(x(1), y)+1; CPD.CPT(x(1), :) = CPD.dirichlet(x(1), :) ./ sum(CPD.dirichlet(x(1), :)); case 2, CPD.dirichlet(x(1), x(2), y) = CPD.dirichlet(x(1), x(2), y)+1; CPD.CPT(x(1), x(2), :) = CPD.dirichlet(x(1), x(2), :) ./ sum(CPD.dirichlet(x(1), x(2), :)); case 3, CPD.dirichlet(x(1), x(2), x(3), y) = CPD.dirichlet(x(1), x(2), x(3), y)+1; CPD.CPT(x(1), x(2), x(3), :) = CPD.dirichlet(x(1), x(2), x(3), :) ./ sum(CPD.dirichlet(x(1), x(2), x(3), :)); otherwise, ind = subv2ind(sz, [x y]); CPD.dirichlet(ind) = CPD.dirichlet(ind) + 1; CPD.CPT = mk_stochastic(CPD.dirichlet); endelse if usecell data = [cell2num(pev); cell2num(self_ev)]; else data = [pev; self_ev]; end counts = compute_counts(data, sz); CPD.dirichlet = CPD.dirichlet + counts; CPD.CPT = mk_stochastic(CPD.dirichlet);end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -