⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 hhmmq_cpd.m

📁 贝叶斯算法(matlab编写) 安装,添加目录 /home/ai2/murphyk/matlab/FullBNT
💻 M
字号:
function CPD = hhmmQ_CPD(bnet, self, Qnodes, d, D, varargin)% HHMMQ_CPD Make the CPD for a Q node at depth D of a D-level hierarchical HMM% CPD = hhmmQ_CPD(bnet, self, Qnodes, d, D, ...)%%  Fd(t-1) \   Q1:d-1(t)%           \  |%            \ v%  Qd(t-1) -> Qd(t)%            /%           /%  Fd+1(t-1) %% We assume parents are ordered (numbered) as follows:% Qd(t-1), Fd+1(t-1), Fd(t-1), Q1(t), ..., Qd(t)%% The parents of Qd(t) can either be just Qd-1(t) or the whole stack Q1:d-1(t) (allQ)% In either case, we will call them Qps.% If d=1, Qps does not exist. Also, the F1(t-1) -> Q1(t) arc is optional.% If the arc is missing, startprob does not need to be specified,% since the toplevel is assumed to never reset (F1 does not exist).% If d=D, Fd+1(t-1) does not exist (there is no signal from below).%% optional args [defaults]%% transprob - transprob(i,k,j) = prob transition from i to j given Qps = k ['leftright']% selfprob  - prob of a transition from i to i given Qps=k [0.1]% startprob - startprob(k,j) = prob start in j given Qps = k ['leftstart']% startargs - other args to be passed to the sub tabular_CPD for learning startprob% transargs - other args will be passed to the sub tabular_CPD for learning transprob% allQ      - 1 means use all Q nodes above d as parents, 0 means just level d-1 [0]% F1toQ1    - 1 means add F1(t-1) -> Q1(t) arc, 0 means level 1 never resets [0]%% For d=1, startprob(1,j) is only needed if F1toQ1=1% Also, transprob(i,j) can be used instead of transprob(i,1,j).%% hhmmQ_CPD is a subclass of tabular_CPD so we inherit inference methods like CPD_to_pot, etc.%% We create isolated tabular_CPDs with no F parents to learn transprob/startprob% so we can avail of e.g., entropic or Dirichlet priors.% In the future, we will be able to represent the transprob using a tree_CPD.%% For details, see "Linear-time inference in hierarchical HMMs", Murphy and Paskin, NIPS'01.ss = bnet.nnodes_per_slice;%assert(self == Qnodes(d)+ss);ns = bnet.node_sizes(:);CPD.Qsizes = ns(Qnodes);CPD.d = d;CPD.D = D;allQ = 0;% find out which parents to use, to get right sizefor i=1:2:length(varargin)  switch varargin{i},   case 'allQ', allQ = varargin{i+1};   endendif d==1  CPD.Qps = [];else  if allQ    CPD.Qps = Qnodes(1:d-1);  else    CPD.Qps = Qnodes(d-1);  endendQsz = ns(self);Qpsz = prod(ns(CPD.Qps));% set default argumentsstartprob = 'leftstart';transprob = 'leftright';startargs = {};transargs = {};CPD.F1toQ1 = 0;selfprob = 0.1;for i=1:2:length(varargin)  switch varargin{i},   case 'transprob', transprob = varargin{i+1};    case 'selfprob',  selfprob = varargin{i+1};    case 'startprob', startprob = varargin{i+1};    case 'startargs', startargs = varargin{i+1};    case 'transargs', transargs = varargin{i+1};    case 'F1toQ1',    CPD.F1toQ1 = varargin{i+1};   endendQps = CPD.Qps + ss;old_self = self-ss;if strcmp(transprob, 'leftright')  LR = mk_leftright_transmat(Qsz, selfprob);  transprob = repmat(reshape(LR, [1 Qsz Qsz]), [Qpsz 1 1]); % transprob(k,i,j)  transprob = permute(transprob, [2 1 3]); % now transprob(i,k,j)endtransargs{end+1} = 'CPT';transargs{end+1} = transprob;CPD.sub_CPD_trans = mk_isolated_tabular_CPD([old_self Qps], ns([old_self Qps self]), transargs);S = struct(CPD.sub_CPD_trans);CPD.transprob = myreshape(S.CPT, [Qsz Qpsz Qsz]);if strcmp(startprob, 'leftstart')  startprob = zeros(Qpsz, Qsz);  startprob(:,1) = 1;endif (d==1) & ~CPD.F1toQ1  CPD.sub_CPD_start = [];  CPD.startprob = [];else  startargs{end+1} = 'CPT';  startargs{end+1} = startprob;  CPD.sub_CPD_start = mk_isolated_tabular_CPD(Qps, ns([Qps self]), startargs);  S = struct(CPD.sub_CPD_start);  CPD.startprob = myreshape(S.CPT, [Qpsz Qsz]);endCPD = class(CPD, 'hhmmQ_CPD', tabular_CPD(bnet, self));CPD = update_CPT(CPD);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -