⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 hhmmq_cpd.m

📁 贝叶斯算法(matlab编写) 安装,添加目录 /home/ai2/murphyk/matlab/FullBNT
💻 M
字号:
function CPD = hhmmQ_CPD(bnet, self, varargin)% HHMMQ_CPD Make the CPD for a Q node in a hierarchical HMM% CPD = hhmmQ_CPD(bnet, self, ...)%%  Fself(t-1)   Qps(t)%           \    |%            \   v%  Qold(t-1) ->  Q(t)%            /%           /%  Fbelow(t-1) %% Let ss = slice size = num. nodes per slice.% This node is Q(t), and has mandatory parents Qold(t-1) (assumed to be numbered Q(t)-ss)% and optional parents Fbelow, Fself, Qps.% We require parents to be ordered (numbered) as follows:% Qold, Fbelow, Fself, Qps, Q.%% If Fself=2, we use the transition matrix, else we use the prior matrix.% If Fself node is omitted (eg. top level), we always use the transition matrix.% If Fbelow=2, we may change state, otherwise we must stay in the same state.% If Fbelow node is omitted (eg., bottom level), we may change state at every step.% If Qps (Q parents) are specified, all parameters are conditioned on their joint value.% We may choose any subset of nodes to condition on, as long as they as numbered lower than self.%% optional args [defaults]%% Fself - node number <= ss% Fbelow  - node number  <= ss% Qps - node numbers (all <= 2*ss) - uses 2TBN indexing% transprob - transprob(i,k,j) = prob transition from i to j given Qps = k ['leftright']% selfprob  - prob of a transition from i to i given Qps=k [0.1]% startprob - startprob(k,j) = prob start in j given Qps = k ['leftstart']% startargs - other args to be passed to the sub tabular_CPD for learning startprob% transargs - other args will be passed to the sub tabular_CPD for learning transprob% fullstartprob - 1 means startprob depends on Q(t-1) [0]% hhmmQ_CPD is a subclass of tabular_CPD so we inherit inference methods like CPD_to_pot, etc.%% We create isolated tabular_CPDs with no F parents to learn transprob/startprob% so we can avail of e.g., entropic or Dirichlet priors.% In the future, we will be able to represent the transprob using a tree_CPD.%% For details, see "Linear-time inference in hierarchical HMMs", Murphy and Paskin, NIPS'01.ss = bnet.nnodes_per_slice;ns = bnet.node_sizes(:);% set default argumentsFself = [];Fbelow = [];Qps = [];startprob = 'leftstart';transprob = 'leftright';startargs = {};transargs = {};selfprob = 0.1;fullstartprob = 0;for i=1:2:length(varargin)  switch varargin{i},   case 'Fself', Fself = varargin{i+1};   case 'Fbelow', Fbelow = varargin{i+1};   case 'Qps', Qps = varargin{i+1};   case 'transprob', transprob = varargin{i+1};    case 'selfprob',  selfprob = varargin{i+1};    case 'startprob', startprob = varargin{i+1};    case 'startargs', startargs = varargin{i+1};    case 'transargs', transargs = varargin{i+1};    case 'fullstartprob', fullstartprob = varargin{i+1};   endendCPD.fullstartprob = fullstartprob;ps = parents(bnet.dag, self);ndsz = ns(:)';CPD.dom_sz = [ndsz(ps) ns(self)];CPD.Fself_ndx = find_equiv_posns(Fself, ps);CPD.Fbelow_ndx = find_equiv_posns(Fbelow, ps);%CPD.Qps_ndx = find_equiv_posns(Qps+ss, ps);CPD.Qps_ndx = find_equiv_posns(Qps, ps);old_self = self-ss;CPD.old_self_ndx = find_equiv_posns(old_self, ps);Qps = ps(CPD.Qps_ndx);CPD.Qsz = ns(self);CPD.Qpsz = prod(ns(Qps));CPD.Qpsizes = ns(Qps);Qsz = CPD.Qsz;Qpsz = CPD.Qpsz;if strcmp(transprob, 'leftright')  LR = mk_leftright_transmat(Qsz, selfprob);  transprob = repmat(reshape(LR, [1 Qsz Qsz]), [Qpsz 1 1]); % transprob(k,i,j)  transprob = permute(transprob, [2 1 3]); % now transprob(i,k,j)endtransargs{end+1} = 'CPT';transargs{end+1} = transprob;CPD.sub_CPD_trans = mk_isolated_tabular_CPD(ns([old_self Qps self]), transargs);S = struct(CPD.sub_CPD_trans);%CPD.transprob = myreshape(S.CPT, [Qsz Qpsz Qsz]);CPD.transprob = S.CPT;if strcmp(startprob, 'leftstart')  startprob = zeros(Qpsz, Qsz);  startprob(:,1) = 1;endif isempty(CPD.Fself_ndx)  CPD.sub_CPD_start = [];  CPD.startprob = [];else  startargs{end+1} = 'CPT';  startargs{end+1} = startprob;  if CPD.fullstartprob    CPD.sub_CPD_start = mk_isolated_tabular_CPD(ns([self Qps self]), startargs);    S = struct(CPD.sub_CPD_start);    %CPD.startprob = myreshape(S.CPT, [Qsz Qpsz Qsz]);    CPD.startprob = S.CPT;  else    CPD.sub_CPD_start = mk_isolated_tabular_CPD(ns([Qps self]), startargs);    S = struct(CPD.sub_CPD_start);    %CPD.startprob = myreshape(S.CPT, [CPD.Qpsizes Qsz]);    CPD.startprob = S.CPT;  endendCPD = class(CPD, 'hhmmQ_CPD', tabular_CPD(bnet, self));CPD = update_CPT(CPD);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -