📄 deterministic_cpd.m
字号:
function CPD = deterministic_CPD(bnet, self, fname, pfail)% DETERMINISTIC_CPD Make a tabular CPD representing a (noisy) deterministic function%% CPD = deterministic_CPD(bnet, self, fname)% This calls feval(fname, pvals) for each possible vector of parent values.% e.g., suppose there are 2 ternary parents, then pvals = % [1 1], [2 1], [3 1], [1 2], [2 2], [3 2], [1 3], [2 3], [3 3]% If v = feval(fname, pvals(i)), then% CPD(x | parents=pvals(i)) = 1 if x==v, and = 0 if x<>v% e.g., suppose X4 = X2 AND (NOT X3). Then% bnet.CPD{4} = deterministic_CPD(bnet, 4, inline('((x(1)-1) & ~(x(2)-1)) + 1')); % Note that x(1) refers pvals(1) = X2, and x(2) refers to pvals(2)=X3% See also boolean_CPD.%% CPD = deterministic_CPD(bnet, self, fname, pfail)% will put probability mass 1-pfail on f(parents), and distribute pfail over the other values.% This is useful for simulating noisy deterministic functions.% If pfail is omitted, it is set to 0.%if nargin==0 % This occurs if we are trying to load an object from a file. CPD = tabular_CPD(bnet, self); return;elseif isa(bnet, 'deterministic_CPD') % This might occur if we are copying an object. CPD = bnet; return;endif nargin < 4, pfail = 0; endps = parents(bnet.dag, self);ns = bnet.node_sizes;psizes = ns(ps);self_size = ns(self);psucc = 1-pfail;CPT = zeros(prod(psizes), self_size);pvals = zeros(1, length(ps));for i=1:prod(psizes) pvals = ind2subv(psizes, i); x = feval(fname, pvals); %fprintf('%d ', [pvals x]); fprintf('\n'); if psucc == 1 CPT(i, x) = 1; else CPT(i, x) = psucc; rest = mysetdiff(1:self_size, x); CPT(i, rest) = pfail/length(rest); endendCPT = reshape(CPT, [psizes self_size]); CPD = tabular_CPD(bnet, self, 'CPT',CPT, 'clamped',1);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -