📄 asia_dt1.m
字号:
% decision theoretic version of asia network% Cowell et al, p177% We explicitely add the no-forgetting arcs.Smoking = 1;VisitToAsia = 2;Bronchitis = 3;LungCancer = 4;TB = 5;Do_Xray = 6;TBorCancer = 7;Util_Xray = 8;Dys = 9;posXray = 10;Do_Hosp = 11;Util_Hosp = 12;n = 12;dag = zeros(n);dag(Smoking, [Bronchitis LungCancer]) = 1;dag(VisitToAsia, [TB Do_Xray Do_Hosp]) = 1;dag(Bronchitis, Dys) = 1;dag(LungCancer, [Util_Hosp TBorCancer]) = 1;dag(TB, [Util_Hosp TBorCancer Util_Xray]) = 1;dag(Do_Xray, [posXray Util_Xray Do_Hosp]) = 1;dag(TBorCancer, [Dys posXray]) = 1;dag(Dys, Do_Hosp) = 1;dag(posXray, Do_Hosp) = 1;dag(Do_Hosp, Util_Hosp) = 1;dnodes = [Do_Xray Do_Hosp];unodes = [Util_Xray Util_Hosp];cnodes = mysetdiff(1:n, [dnodes unodes]); % chance nodesns = 2*ones(1,n);ns(unodes) = 1;limid = mk_limid(dag, ns, 'chance', cnodes, 'decision', dnodes, 'utility', unodes);% 1 = yes, 2 = nolimid.CPD{VisitToAsia} = tabular_CPD(limid, VisitToAsia, [0.01 0.99]);limid.CPD{Bronchitis} = tabular_CPD(limid, Bronchitis, [0.6 0.3 0.4 0.7]);limid.CPD{Dys} = tabular_CPD(limid, Dys, [0.9 0.7 0.8 0.1 0.1 0.3 0.2 0.9]);limid.CPD{TBorCancer} = tabular_CPD(limid, TBorCancer, [1 1 1 0 0 0 0 1]);limid.CPD{LungCancer} = tabular_CPD(limid, LungCancer, [0.1 0.01 0.9 0.99]);limid.CPD{Smoking} = tabular_CPD(limid, Smoking, [0.5 0.5]);limid.CPD{TB} = tabular_CPD(limid, TB, [0.05 0.01 0.95 0.99]);limid.CPD{posXray} = tabular_CPD(limid, posXray, [0.98 0.5 0.05 0.5 0.02 0.5 0.95 0.5]);limid.CPD{Util_Hosp} = tabular_utility_node(limid, Util_Hosp, [180 120 160 15 2 4 0 40]);limid.CPD{Util_Xray} = tabular_utility_node(limid, Util_Xray, [0 1 10 10]);for i=dnodes(:)' limid.CPD{i} = tabular_decision_node(limid, i);endengines = {};engines{end+1} = global_joint_inf_engine(limid);engines{end+1} = jtree_limid_inf_engine(limid);%engines{end+1} = belprop_inf_engine(limid);exact = [1 2];%approx = 3;approx = [];NE = length(engines);MEU = zeros(1, NE);niter = zeros(1, NE);strategy = cell(1, NE);tol = 1e-2;for e=1:length(engines) [strategy{e}, MEU(e), niter(e)] = solve_limid(engines{e});endfor e=exact(:)' assert(approxeq(MEU(e), 47.49, tol)) assert(isequal(strategy{e}{Do_Xray}(:)', [1 0 0 1])) % Check the hosptialize strategy is correct (p180) % We assume the patient has not been to Asia and therefore did not have an Xray. % In this case it is optimal not to hospitalize regardless of whether the patient has % dyspnoea or not (and of course regardless of the value of pos_xray). asia = 2; do_xray = 2; for dys = 1:2 for pos_xray = 1:2 assert(argmax(squeeze(strategy{e}{Do_Hosp}(asia, do_xray, dys, pos_xray, :))) == 2) end endendfor e=approx(:)' approxeq(strategy{exact(1)}{Do_Xray}, strategy{e}{Do_Xray}) approxeq(strategy{exact(1)}{Do_Hosp}, strategy{e}{Do_Hosp})end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -