📄 learn_square_hhmm.m
字号:
% Learn a 3 level HHMM similar to mk_square_hhmm
% Because startprob should be shared for t=1:T,
% but in the DBN is shared for t=2:T, we train using a single long sequence.
discrete_obs = 0;
supervised = 1;
obs_finalF2 = 0;
% It is not possible to observe F2 if we learn
% because the update_ess method for hhmmF_CPD and hhmmQ_CPD assume
% the F nodes are always hidden (for speed).
% However, for generating, we might want to set the final F2=true
% to force all subroutines to finish.
ss = 6;
Q1 = 1; Q2 = 2; Q3 = 3; F3 = 4; F2 = 5; Onode = 6;
Qnodes = [Q1 Q2 Q3]; Fnodes = [F2 F3];
seed = 1;
rand('state', seed);
randn('state', seed);
if discrete_obs
Qsizes = [2 4 2];
else
Qsizes = [2 4 1];
end
D = 3;
Qnodes = 1:D;
startprob = cell(1,D);
transprob = cell(1,D);
termprob = cell(1,D);
startprob{1} = 'unif';
transprob{1} = 'unif';
% In the unsupervised case, it is essential that we break symmetry
% in the initial param estimates.
%startprob{2} = 'unif';
%transprob{2} = 'unif';
%termprob{2} = 'unif';
startprob{2} = 'rnd';
transprob{2} = 'rnd';
termprob{2} = 'rnd';
leftright = 0;
if leftright
% Initialise base-level models as left-right.
% If we initialise with delta functions,
% they will remain delat funcitons after learning
startprob{3} = 'leftstart';
transprob{3} = 'leftright';
termprob{3} = 'rightstop';
else
% If we want to be able to run a base-level model backwards...
startprob{3} = 'rnd';
transprob{3} = 'rnd';
termprob{3} = 'rnd';
end
if discrete_obs
% Initialise observations of lowest level primitives in a way which we can interpret
chars = ['L', 'l', 'U', 'u', 'R', 'r', 'D', 'd'];
L=find(chars=='L'); l=find(chars=='l');
U=find(chars=='U'); u=find(chars=='u');
R=find(chars=='R'); r=find(chars=='r');
D=find(chars=='D'); d=find(chars=='d');
Osize = length(chars);
p = 0.9;
obsprob = (1-p)*ones([4 2 Osize]);
% Q2 Q3 O
obsprob(1, 1, L) = p;
obsprob(1, 2, l) = p;
obsprob(2, 1, U) = p;
obsprob(2, 2, u) = p;
obsprob(3, 1, R) = p;
obsprob(3, 2, r) = p;
obsprob(4, 1, D) = p;
obsprob(4, 2, d) = p;
obsprob = mk_stochastic(obsprob);
Oargs = {'CPT', obsprob};
else
% Initialise means of lowest level primitives in a way which we can interpret
% These means are little vectors in the east, south, west, north directions.
% (left-right=east, up-down=south, right-left=west, down-up=north)
Osize = 2;
mu = zeros(2, Qsizes(2), Qsizes(3));
noise = 0;
scale = 3;
for q3=1:Qsizes(3)
mu(:, 1, q3) = scale*[1;0] + noise*rand(2,1);
end
for q3=1:Qsizes(3)
mu(:, 2, q3) = scale*[0;-1] + noise*rand(2,1);
end
for q3=1:Qsizes(3)
mu(:, 3, q3) = scale*[-1;0] + noise*rand(2,1);
end
for q3=1:Qsizes(3)
mu(:, 4, q3) = scale*[0;1] + noise*rand(2,1);
end
Sigma = repmat(reshape(scale*eye(2), [2 2 1 1 ]), [1 1 Qsizes(2) Qsizes(3)]);
Oargs = {'mean', mu, 'cov', Sigma, 'cov_type', 'diag'};
end
bnet = mk_hhmm('Qsizes', Qsizes, 'Osize', Osize', 'discrete_obs', discrete_obs,...
'Oargs', Oargs, 'Ops', Qnodes(2:3), ...
'startprob', startprob, 'transprob', transprob, 'termprob', termprob);
if supervised
bnet.observed = [Q1 Q2 Onode];
else
bnet.observed = [Onode];
end
if obs_finalF2
engine = jtree_dbn_inf_engine(bnet);
% can't use ndx version because sometimes F2 is hidden, sometimes observed
error('can''t observe F when learning')
else
if supervised
engine = jtree_ndx_dbn_inf_engine(bnet);
else
engine = jtree_hmm_inf_engine(bnet);
end
end
if discrete_obs
% generate some synthetic data (easier to debug)
cases = {};
T = 8;
ev = cell(ss, T);
ev(Onode,:) = num2cell([L l U u R r D d]);
if supervised
ev(Q1,:) = num2cell(1*ones(1,T));
ev(Q2,:) = num2cell( [1 1 2 2 3 3 4 4]);
end
cases{1} = ev;
cases{3} = ev;
T = 8;
ev = cell(ss, T);
if leftright % base model is left-right
ev(Onode,:) = num2cell([R r U u L l D d]);
else
ev(Onode,:) = num2cell([r R u U l L d D]);
end
if supervised
ev(Q1,:) = num2cell(2*ones(1,T));
ev(Q2,:) = num2cell( [3 3 2 2 1 1 4 4]);
end
cases{2} = ev;
cases{4} = ev;
if obs_finalF2
for i=1:length(cases)
T = size(cases{i},2);
cases{i}(F2,T)={2}; % force F2 to be finished at end of seq
end
end
if 0
ev = cases{4};
engine2 = enter_evidence(engine2, ev);
T = size(ev,2);
for t=1:T
m=marginal_family(engine2, F2, t);
fprintf('t=%d\n', t);
reshape(m.T, [2 2])
end
end
% [bnet2, LL] = learn_params_dbn_em(engine, cases, 'max_iter', 10);
long_seq = cat(2, cases{:});
[bnet2, LL, engine2] = learn_params_dbn_em(engine, {long_seq}, 'max_iter', 200);
% figure out which subsequence each model is responsible for
mpe = calc_mpe_dbn(engine2, long_seq);
pretty_print_hhmm_parse(mpe, Qnodes, Fnodes, Onode, chars);
else
load 'square4_cases' % cases{seq}{i,t} for i=1:ss
%plot_square_hhmm(cases{1})
%long_seq = cat(2, cases{:});
train_cases = cases(1:2);
long_seq = cat(2, train_cases{:});
if ~supervised
T = size(long_seq,2);
for t=1:T
long_seq{Q1,t} = [];
long_seq{Q2,t} = [];
end
end
[bnet2, LL, engine2] = learn_params_dbn_em(engine, {long_seq}, 'max_iter', 100);
CPDO=struct(bnet2.CPD{eclass(Onode,1)});
mu = CPDO.mean;
Sigma = CPDO.cov;
CPDO_full = CPDO;
% force diagonal covs after training
for k=1:size(Sigma,3)
Sigma(:,:,k) = diag(diag(Sigma(:,:,k)));
end
bnet2.CPD{6} = set_fields(bnet.CPD{6}, 'cov', Sigma);
if 0
% visualize each model by concatenating means for each model for nsteps in a row
nsteps = 5;
ev = cell(ss, nsteps*prod(Qsizes(2:3)));
t = 1;
for q2=1:Qsizes(2)
for q3=1:Qsizes(3)
for i=1:nsteps
ev{Onode,t} = mu(:,q2,q3);
ev{Q2,t} = q2;
t = t + 1;
end
end
end
plot_square_hhmm(ev)
end
% bnet3 is the same as the learned model, except we will use it in testing mode
if supervised
bnet3 = bnet2;
bnet3.observed = [Onode];
engine3 = hmm_inf_engine(bnet3);
%engine3 = jtree_ndx_dbn_inf_engine(bnet3);
else
bnet3 = bnet2;
engine3 = engine2;
end
if 0
% segment whole sequence
mpe = calc_mpe_dbn(engine3, long_seq);
pretty_print_hhmm_parse(mpe, Qnodes, Fnodes, Onode, []);
end
% segment each sequence
test_cases = cases(3:4);
for i=1:2
ev = test_cases{i};
T = size(ev, 2);
for t=1:T
ev{Q1,t} = [];
ev{Q2,t} = [];
end
mpe = calc_mpe_dbn(engine3, ev);
subplot(1,2,i)
plot_square_hhmm(mpe)
%pretty_print_hhmm_parse(mpe, Qnodes, Fnodes, Onode, []);
q1s = cell2num(mpe(Q1,:));
h = hist(q1s, 1:Qsizes(1));
map_q1 = argmax(h);
str = sprintf('test seq %d is of type %d\n', i, map_q1);
title(str)
end
end
if 0
% Estimate gotten by couting transitions in the labelled data
% Note that a self transition shouldnt count if F2=off.
Q2ev = cell2num(ev(Q2,:));
Q2a = Q2ev(1:end-1);
Q2b = Q2ev(2:end);
counts = compute_counts([Q2a; Q2b], [4 4]);
end
eclass = bnet2.equiv_class;
CPDQ1=struct(bnet2.CPD{eclass(Q1,2)});
CPDQ2=struct(bnet2.CPD{eclass(Q2,2)});
CPDQ3=struct(bnet2.CPD{eclass(Q3,2)});
CPDF2=struct(bnet2.CPD{eclass(F2,1)});
CPDF3=struct(bnet2.CPD{eclass(F3,1)});
A=add_hhmm_end_state(CPDQ2.transprob, CPDF2.termprob(:,:,2));
squeeze(A(:,1,:))
squeeze(A(:,2,:))
CPDQ2.startprob
if 0
S=struct(CPDF2.sub_CPD_term);
S.nsamples
reshape(S.counts, [2 4 2])
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -