📄 mk_hhmm.m
字号:
function [bnet, Qnodes, Fnodes, Onode] = mk_hhmm(varargin)% MK_HHMM Make a Hierarchical HMM% function [bnet, Qnodes, Fnodes, Onode] = mk_hhmm(...)%% e.g. 3-layer hierarchical HMM where level 1 only connects to level 2% and the parents of the observed node are levels 2 and 3.% (This DBN is the same as Fig 10 in my tech report.)%% Q1 ----------> Q1% | \ ^ |% | v / |% | F2 ------/ |% | ^ ^ \ |% | / | \ |% | / | ||% v | vv% Q2----| --------> Q2% /| \ | ^|% / | v | / |% | | F3 --------/ |% | | ^ \ |% | v / v v% | Q3 -----------> Q3% | | % \ | % v v % O%%% Optional arguments in name/value format [default value in brackets]%% Qsizes - sizes at each level [ none ]% allQ - 1 means level i connects to all Q levels below, 0 means just to i+1 [0]% transprob - transprob{d}(i,k,j) = P(Q(d,t)=j|Q(d,t-1)=i,Q(1:d-1,t)=k) ['leftright']% startprob - startprob{d}(k,j) = P(Q(d,t)=j|Q(1:d-1,t)=k) ['leftstart']% termprob - termprob{d}(k,j) = P(F(d,t)=2|Q(1:d-1,t)=k,Q(d,t)=j) for d>1 ['rightstop']% selfprop - prob of a self transition (termprob default = 1-selfprop) [0.8]% Osize - size of O node% discrete_obs - 1 means O is tabular_CPD, 0 means gaussian_CPD [0]% Oargs - cell array of args to pass to the O CPD [ {} ]% Ops - Q parents of O [Qnodes(end)]% F1 - 1 means level 1 can finish (restart), else there is no F1->Q1 arc [0]% clamp1 - 1 means we clamp the params of the Q nodes in slice 1 (Qt1params) [1]% Note: the Qt1params are startprob, which should be shared with other slices.% However, in the current implementation, the Qt1params will only be estimated% from the initial state of each sequence.%% For d=1, startprob{1}(1,j) is only used in the first slice and% termprob{1} is ignored, since we assume the top level never resets.% Also, transprob{1}(i,j) can be used instead of transprob{1}(i,1,j).%% leftstart means the model always starts in state 1.% rightstop means the model can only finish in its last state (Qsize(d)).% unif means each state is equally like to reach any other% rnd means the transition/starting probs are random (drawn from rand)%% Q1:QD in slice 1 are of type tabular_CPD% Q1:QD in slice 2 are of type hhmmQ_CPD.% F(2:D-1) is of type hhmmF_CPD, FD is of type tabular_CPD.args = varargin;nargs = length(args);% get sizes of nodes and topologyQsizes = [];Osize = [];allQ = 0;Ops = [];F1 = 0;for i=1:2:nargs switch args{i}, case 'Qsizes', Qsizes = args{i+1}; case 'Osize', Osize = args{i+1}; case 'allQ', allQ = args{i+1}; case 'Ops', Ops = args{i+1}; case 'F1', F1 = args{i+1}; endendif isempty(Qsizes), error('must specify Qsizes'); endif Osize==0, error('must specify Osize'); endD = length(Qsizes);Qnodes = 1:D;if isempty(Ops), Ops = Qnodes(end); end[intra, inter, Qnodes, Fnodes, Onode] = mk_hhmm_topo(D, allQ, Ops, F1);ss = length(intra);names = {};if F1 Fnodes_ndx = Fnodes;else Fnodes_ndx = [-1 Fnodes]; % Fnodes(1) is a dummy indexend % set default paramsdiscrete_obs = 0;Oargs = {};startprob = cell(1,D);startprob{1} = 'unif';for d=2:D startprob{d} = 'leftstart';endtransprob = cell(1,D);transprob{1} = 'unif';for d=2:D transprob{d} = 'leftright';endtermprob = cell(1,D);for d=2:D termprob{d} = 'rightstop';endselfprob = 0.8;clamp1 = 1;for i=1:2:nargs switch args{i}, case 'discrete_obs', discrete_obs = args{i+1}; case 'Oargs', Oargs = args{i+1}; case 'startprob', startprob = args{i+1}; case 'transprob', transprob = args{i+1}; case 'termprob', termprob = args{i+1}; case 'selfprob', selfprob = args{i+1}; case 'clamp1', clamp1 = args{i+1}; endendns = zeros(1,ss);ns(Qnodes) = Qsizes;ns(Onode) = Osize;ns(Fnodes) = 2;dnodes = [Qnodes Fnodes];if discrete_obs dnodes = [dnodes Onode];endonodes = [Onode];bnet = mk_dbn(intra, inter, ns, 'observed', onodes, 'discrete', dnodes, 'names', names);eclass = bnet.equiv_class;for d=1:D if d==1 Qps = []; elseif allQ Qps = Qnodes(1:d-1); else Qps = Qnodes(d-1); end Qpsz = prod(ns(Qps)); Qsz = ns(Qnodes(d)); if isstr(startprob{d}) switch startprob{d} case 'unif', startprob{d} = mk_stochastic(ones(Qpsz, Qsz)); case 'rnd', startprob{d} = mk_stochastic(rand(Qpsz, Qsz)); case 'leftstart', startprob{d} = zeros(Qpsz, Qsz); startprob{d}(:,1) = 1; end end if isstr(transprob{d}) switch transprob{d} case 'unif', transprob{d} = mk_stochastic(ones(Qsz, Qpsz, Qsz)); case 'rnd', transprob{d} = mk_stochastic(rand(Qsz, Qpsz, Qsz)); case 'leftright', LR = mk_leftright_transmat(Qsz, selfprob); temp = repmat(reshape(LR, [1 Qsz Qsz]), [Qpsz 1 1]); % transprob(k,i,j) transprob{d} = permute(temp, [2 1 3]); % now transprob(i,k,j) end end if isstr(termprob{d}) switch termprob{d} case 'unif', termprob{d} = mk_stochastic(ones(Qpsz, Qsz, 2)); case 'rnd', termprob{d} = mk_stochastic(rand(Qpsz, Qsz, 2)); case 'rightstop', %termprob(k,i,t) Might terminate if i=Qsz; will not terminate if i<Qsz stopprob = 1-selfprob; termprob{d} = zeros(Qpsz, Qsz, 2); termprob{d}(:,Qsz,2) = stopprob; termprob{d}(:,Qsz,1) = 1-stopprob; termprob{d}(:,1:(Qsz-1),1) = 1; otherwise, error(['unrecognized termprob ' termprob{d}]) end elseif d>1 % passed in termprob{d}(k,j) temp = termprob{d}; termprob{d} = zeros(Qpsz, Qsz, 2); termprob{d}(:,:,2) = temp; termprob{d}(:,:,1) = ones(Qpsz,Qsz) - temp; endend% SLICE 1for d=1:D bnet.CPD{eclass(Qnodes(d),1)} = tabular_CPD(bnet, Qnodes(d), 'CPT', startprob{d}, 'adjustable', clamp1);endif F1 d = 1; bnet.CPD{eclass(Fnodes_ndx(d),1)} = hhmmF_CPD(bnet, Fnodes_ndx(d), Qnodes(d), Fnodes_ndx(d+1), ... 'termprob', termprob{d});endfor d=2:D-1 if allQ Qps = Qnodes(1:d-1); else Qps = Qnodes(d-1); end bnet.CPD{eclass(Fnodes_ndx(d),1)} = hhmmF_CPD(bnet, Fnodes_ndx(d), Qnodes(d), Fnodes_ndx(d+1), ... 'Qps', Qps, 'termprob', termprob{d});endbnet.CPD{eclass(Fnodes_ndx(D),1)} = tabular_CPD(bnet, Fnodes_ndx(D), 'CPT', termprob{D});if discrete_obs bnet.CPD{eclass(Onode,1)} = tabular_CPD(bnet, Onode, Oargs{:});else bnet.CPD{eclass(Onode,1)} = gaussian_CPD(bnet, Onode, Oargs{:});end% SLICE 2%for d=1:D% bnet.CPD{eclass(Qnodes(d),2)} = hhmmQ_CPD(bnet, Qnodes(d)+ss, Qnodes, d, D, ...% 'startprob', startprob{d}, 'transprob', transprob{d}, ...% 'allQ', allQ);%endd = 1;if F1 bnet.CPD{eclass(Qnodes(d),2)} = hhmmQ_CPD(bnet, Qnodes(d)+ss, 'Fself', Fnodes_ndx(d), ... 'Fbelow', Fnodes_ndx(d+1), ... 'startprob', startprob{d}, 'transprob', transprob{d});else bnet.CPD{eclass(Qnodes(d),2)} = hhmmQ_CPD(bnet, Qnodes(d)+ss, ... 'Fbelow', Fnodes_ndx(d+1), ... 'startprob', startprob{d}, 'transprob', transprob{d});endfor d=2:D-1 if allQ Qps = Qnodes(1:d-1); else Qps = Qnodes(d-1); end Qps = Qps + ss; % since all in slice 2 bnet.CPD{eclass(Qnodes(d),2)} = hhmmQ_CPD(bnet, Qnodes(d)+ss, 'Fself', Fnodes_ndx(d), ... 'Fbelow', Fnodes_ndx(d+1), 'Qps', Qps, ... 'startprob', startprob{d}, 'transprob', transprob{d});endd = D;if allQ Qps = Qnodes(1:d-1);else Qps = Qnodes(d-1);endQps = Qps + ss; % since all in slice 2bnet.CPD{eclass(Qnodes(d),2)} = hhmmQ_CPD(bnet, Qnodes(d)+ss, 'Fself', Fnodes_ndx(d), ... 'Qps', Qps, ... 'startprob', startprob{d}, 'transprob', transprob{d});
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -