⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 mhmm1.m

📁 贝叶斯算法(matlab编写) 安装,添加目录 /home/ai2/murphyk/matlab/FullBNT
💻 M
字号:
% Make an HMM with mixture of Gaussian observations%    Q1 ---> Q2%  /  |   /  |% M1  |  M2  | %  \  v   \  v%    Y1     Y2 % where Pr(m=j|q=i) is a multinomial and Pr(y|m,q) is a Gaussian     %seed = 3;%rand('state', seed);%randn('state', seed);intra = zeros(3);intra(1,[2 3]) = 1;intra(2,3) = 1;inter = zeros(3);inter(1,1) = 1;n = 3;Q = 2; % num hidden statesO = 2; % size of observed vectorM = 2; % num mixture components per statens = [Q M O];dnodes = [1 2];onodes = [3];eclass1 = [1 2 3];eclass2 = [4 2 3];bnet = mk_dbn(intra, inter, ns, 'discrete', dnodes, 'eclass1', eclass1, 'eclass2', eclass2, ...	      'observed', onodes);prior0 = normalise(rand(Q,1));transmat0 = mk_stochastic(rand(Q,Q));mixmat0 = mk_stochastic(rand(Q,M));mu0 = rand(O,Q,M);Sigma0 = repmat(eye(O), [1 1 Q M]);bnet.CPD{1} = tabular_CPD(bnet, 1, prior0);bnet.CPD{2} = tabular_CPD(bnet, 2, mixmat0);%% we set the cov prior to 0 to give same results as HMM toolbox%bnet.CPD{3} = gaussian_CPD(bnet, 3, 'mean', mu0, 'cov', Sigma0, 'cov_prior_weight', 0);% new version of HMM toolbox uses the same default prior on Gaussians as BNTbnet.CPD{3} = gaussian_CPD(bnet, 3, 'mean', mu0, 'cov', Sigma0);bnet.CPD{4} = tabular_CPD(bnet, 4, transmat0);T = 5; % fixed length sequencesengine = {};engine{end+1} = hmm_inf_engine(bnet);engine{end+1} = smoother_engine(jtree_2TBN_inf_engine(bnet));engine{end+1} = smoother_engine(hmm_2TBN_inf_engine(bnet));if 0engine{end+1} = jtree_unrolled_dbn_inf_engine(bnet, T);%engine{end+1} = frontier_inf_engine(bnet);engine{end+1} = bk_inf_engine(bnet, 'clusters', 'exact');engine{end+1} = jtree_dbn_inf_engine(bnet);endinf_time = cmp_inference_dbn(bnet, engine, T);ncases = 2;max_iter = 2;[learning_time, CPD, LL, cases] = cmp_learning_dbn(bnet, engine, T, 'ncases', ncases, 'max_iter', max_iter);% Compare to HMM toolboxdata = zeros(O, T, ncases);for i=1:ncases  data(:,:,i) = reshape(cell2num(cases{i}(onodes,:)), [O T]);endtic;[LL2, prior2, transmat2, mu2, Sigma2, mixmat2] = ...    mhmm_em(data, prior0, transmat0,  mu0, Sigma0, mixmat0, 'max_iter', max_iter);t=toc;disp(['HMM toolbox took ' num2str(t) ' seconds '])for e = 1:length(engine)  assert(approxeq(prior2, CPD{e,1}.CPT))  assert(approxeq(mixmat2, CPD{e,2}.CPT))  assert(approxeq(mu2, CPD{e,3}.mean))  assert(approxeq(Sigma2, CPD{e,3}.cov))  assert(approxeq(transmat2, CPD{e,4}.CPT))  assert(approxeq(LL2, LL{e}))end

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -