📄 arhmm1.m
字号:
% Make an HMM with autoregressive Gaussian observations (switching AR model)% X1 -> X2% | | % v v% Y1 -> Y2 seed = 0;rand('state', seed);randn('state', seed);intra = zeros(2);intra(1,2) = 1;inter = zeros(2);inter(1,1) = 1;inter(2,2) = 1;n = 2;Q = 2; % num hidden statesO = 2; % size of observed vectorns = [Q O];dnodes = 1;onodes = [2];bnet = mk_dbn(intra, inter, ns, 'discrete', dnodes, 'observed', onodes);bnet.CPD{1} = tabular_CPD(bnet, 1);bnet.CPD{2} = gaussian_CPD(bnet, 2);bnet.CPD{3} = tabular_CPD(bnet, 3);bnet.CPD{4} = gaussian_CPD(bnet, 4);T = 10; % fixed length sequencesengine = {};%engine{end+1} = hmm_inf_engine(bnet);engine{end+1} = jtree_unrolled_dbn_inf_engine(bnet, T);%engine{end+1} = smoother_engine(hmm_2TBN_inf_engine(bnet));%engine{end+1} = smoother_engine(jtree_2TBN_inf_engine(bnet));inf_time = cmp_inference_dbn(bnet, engine, T, 'check_ll',1);learning_time = cmp_learning_dbn(bnet, engine, T, 'check_ll', 1);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -