⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 skf_data_assoc_gmux.m

📁 贝叶斯算法(matlab编写) 安装,添加目录 /home/ai2/murphyk/matlab/FullBNT
💻 M
字号:
% We consider a switching Kalman filter of the kind studied% by Zoubin Ghahramani, i.e., where the switch node determines% which of the hidden chains we get to observe (data association).% e.g., for n=2 chains% % X1 -> X1% | X2 -> X2% \ |%  v%  Y%  ^%  |%  S%% Y is a gmux (multiplexer) node, where S switches in one of the parents.% We differ from Zoubin by not connecting the S nodes over time (which% doesn't make sense for data association).% Indeed, we assume the S nodes are always observed.% %% We will track 2 objects (points) moving in the plane, as in BNT/Kalman/tracking_demo.% We will alternate between observing them.nobj = 2;N = nobj+2;Xs = 1:nobj;S = nobj+1;Y = nobj+2;intra = zeros(N,N);inter = zeros(N,N);intra([Xs S], Y) =1;for i=1:nobj  inter(Xs(i), Xs(i))=1;endXsz = 4; % state space = (x y xdot ydot)Ysz = 2;ns = zeros(1,N);ns(Xs) = Xsz;ns(Y) = Ysz;ns(S) = n;bnet = mk_dbn(intra, inter, ns, 'discrete', S, 'observed', [S Y]);% For each object, we have% X(t+1) = F X(t) + noise(Q)% Y(t) = H X(t) + noise(R)F = [1 0 1 0; 0 1 0 1; 0 0 1 0; 0 0 0 1];H = [1 0 0 0; 0 1 0 0];Q = 1e-3*eye(Xsz);%R = 1e-3*eye(Ysz);R = eye(Ysz);% We initialise object 1 moving to the right, and object 2 moving to the left% (Here, we assume nobj=2)init_state{1} = [10 10 1 0]';init_state{2} = [10 -10 -1 0]';for i=1:nobj  bnet.CPD{Xs(i)} = gaussian_CPD(bnet, Xs(i), 'mean', init_state{i}, 'cov', 1e-4*eye(Xsz));endbnet.CPD{S} = root_CPD(bnet, S); % always observedbnet.CPD{Y} = gmux_CPD(bnet, Y, 'cov', repmat(R, [1 1 nobj]), 'weights', repmat(H, [1 1 nobj]));% slice 2eclass = bnet.equiv_class;for i=1:nobj  bnet.CPD{eclass(Xs(i), 2)} = gaussian_CPD(bnet, Xs(i)+N, 'mean', zeros(Xsz,1), 'cov', Q, 'weights', F);end% Observe objects at randomT = 10;evidence = cell(N, T);data_assoc = sample_discrete(normalise(ones(1,nobj)), 1, T);evidence(S,:) = num2cell(data_assoc);evidence = sample_dbn(bnet, 'evidence', evidence);% plot the datatrue_state = cell(1,nobj);for i=1:nobj  true_state{i} = cell2num(evidence(Xs(i), :)); % true_state{i}(:,t) = [x y xdot ydot]'endobs_pos = cell2num(evidence(Y,:));figure(1)clfhold onstyles = {'rx', 'go', 'b+', 'k*'};for i=1:nobj  plot(true_state{i}(1,:), true_state{i}(2,:), styles{i});endfor t=1:T  text(obs_pos(1,t), obs_pos(2,t), sprintf('%d', t));endhold offrelax_axes(0.1)% Inferenceev = cell(N,T);ev(bnet.observed,:) = evidence(bnet.observed, :);engines = {};engines{end+1} = jtree_dbn_inf_engine(bnet);%engines{end+1} = scg_unrolled_dbn_inf_engine(bnet, T);engines{end+1} = pearl_unrolled_dbn_inf_engine(bnet);E = length(engines);inferred_state = cell(nobj,E); % inferred_state{i,e}(:,t)for e=1:E  engines{e} = enter_evidence(engines{e}, ev);  for i=1:nobj    inferred_state{i,e} = zeros(4, T);    for t=1:T      m = marginal_nodes(engines{e}, Xs(i), t);      inferred_state{i,e}(:,t) = m.mu;    end  endendinferred_state{1,1}inferred_state{1,2}% Plot resultsfigure(2)clfhold onstyles = {'rx', 'go', 'b+', 'k*'};nstyles = length(styles);c = 1;for e=1:E  for i=1:nobj    plot(inferred_state{i,e}(1,:), inferred_state{i,e}(2,:), styles{mod(c-1,nstyles)+1});    c = c + 1;  endendfor t=1:T  text(obs_pos(1,t), obs_pos(2,t), sprintf('%d', t));endhold offrelax_axes(0.1)

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -