📄 scg_dbn.m
字号:
% to test whether scg inference engine can handl dynameic BN% Make a linear dynamical system% X1 -> X2% | | % v v% Y1 Y2 intra = zeros(2);intra(1,2) = 1;inter = zeros(2);inter(1,1) = 1;n = 2;X = 2; % size of hidden stateY = 2; % size of observable statens = [X Y];dnodes = [];onodes = [2];eclass1 = [1 2];eclass2 = [3 2];bnet = mk_dbn(intra, inter, ns, dnodes, eclass1, eclass2);x0 = rand(X,1);V0 = eye(X);C0 = rand(Y,X);R0 = eye(Y);A0 = rand(X,X);Q0 = eye(X);bnet.CPD{1} = gaussian_CPD(bnet, 1, 'mean', x0, 'cov', V0);%bnet.CPD{2} = gaussian_CPD(bnet, 2, 'mean', zeros(Y,1), 'cov', R0, 'weights', C0, 'full', 'untied', 'clamped_mean');%bnet.CPD{3} = gaussian_CPD(bnet, 3, 'mean', zeros(X,1), 'cov', Q0, 'weights', A0, 'full', 'untied', 'clamped_mean');bnet.CPD{2} = gaussian_CPD(bnet, 2, 'mean', zeros(Y,1), 'cov', R0, 'weights', C0);bnet.CPD{3} = gaussian_CPD(bnet, 3, 'mean', zeros(X,1), 'cov', Q0, 'weights', A0);T = 5; % fixed length sequencesclear engine;%engine{1} = kalman_inf_engine(bnet, onodes);engine{1} = scg_unrolled_dbn_inf_engine(bnet, T, onodes);engine{2} = jtree_unrolled_dbn_inf_engine(bnet, T);N = length(engine);% inferenceev = sample_dbn(bnet, T);evidence = cell(n,T);evidence(onodes,:) = ev(onodes, :);t = 2;query = [1 3];m = cell(1, N);ll = zeros(1, N);engine{1} = enter_evidence(engine{1}, evidence);[engine{2}, ll(2)] = enter_evidence(engine{2}, evidence);m{1} = marginal_nodes(engine{1}, query);m{2} = marginal_nodes(engine{2}, query, t);% compare all engines to engine{1}for i=2:N assert(approxeq(m{1}.mu, m{i}.mu)); assert(approxeq(m{1}.Sigma, m{i}.Sigma));% assert(approxeq(ll(1), ll(i)));end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -