📄 ghmm1.m
字号:
% Make an HMM with Gaussian observations% X1 -> X2% | | % v v% Y1 Y2 intra = zeros(2);intra(1,2) = 1;inter = zeros(2);inter(1,1) = 1;n = 2;Q = 2; % num hidden statesO = 2; % size of observed vectorns = [Q O];bnet = mk_dbn(intra, inter, ns, 'discrete', 1, 'observed', 2);prior0 = normalise(rand(Q,1));transmat0 = mk_stochastic(rand(Q,Q));mu0 = rand(O,Q);Sigma0 = repmat(eye(O), [1 1 Q]);bnet.CPD{1} = tabular_CPD(bnet, 1, prior0);%% we set the cov prior to 0 to give same results as HMM toolbox%bnet.CPD{2} = gaussian_CPD(bnet, 2, 'mean', mu0, 'cov', Sigma0, 'cov_prior_weight', 0);bnet.CPD{2} = gaussian_CPD(bnet, 2, 'mean', mu0, 'cov', Sigma0);bnet.CPD{3} = tabular_CPD(bnet, 3, transmat0);T = 5; % fixed length sequencesengine = {};engine{end+1} = smoother_engine(jtree_2TBN_inf_engine(bnet));engine{end+1} = smoother_engine(hmm_2TBN_inf_engine(bnet));engine{end+1} = hmm_inf_engine(bnet);engine{end+1} = jtree_unrolled_dbn_inf_engine(bnet, T);%engine{end+1} = frontier_inf_engine(bnet);engine{end+1} = bk_inf_engine(bnet, 'clusters', {[1]});engine{end+1} = jtree_dbn_inf_engine(bnet);inf_time = cmp_inference_dbn(bnet, engine, T);ncases = 2;max_iter = 2;[learning_time, CPD, LL, cases] = cmp_learning_dbn(bnet, engine, T, 'ncases', ncases, 'max_iter', max_iter);% Compare to HMM toolboxdata = zeros(O, T, ncases);for i=1:ncases data(:,:,i) = cell2num(cases{i}(bnet.observed, :)); endtic[LL2, prior2, transmat2, mu2, Sigma2] = mhmm_em(data, prior0, transmat0, mu0, Sigma0, [], 'max_iter', max_iter);t=toc;disp(['HMM toolbox took ' num2str(t) ' seconds '])e = 1;assert(approxeq(prior2, CPD{e,1}.CPT))assert(approxeq(mu2, CPD{e,2}.mean))assert(approxeq(Sigma2, CPD{e,2}.cov))assert(approxeq(transmat2, CPD{e,3}.CPT))assert(approxeq(LL2, LL{e}))
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -