📄 kjaerulff1.m
字号:
% Compare the speeds of various inference engines on the DBN in Kjaerulff% "dHugin: A computational system for dynamic time-sliced {B}ayesian networks",% Intl. J. Forecasting 11:89-111, 1995.%% The intra structure is (all arcs point downwards)%% 1 -> 2% \ /% 3% |% 4% / \% 5 6% \ /% 7% |% 8%% The inter structure is 1->1, 4->4, 8->8seed = 0;rand('state', seed);randn('state', seed);ss = 8;intra = zeros(ss);intra(1,[2 3])=1;intra(2,3)=1;intra(3,4)=1;intra(4,[5 6])=1;intra([5 6], 7)=1;intra(7,8)=1;inter = zeros(ss);inter(1,1)=1;inter(4,4)=1;inter(8,8)=1;ns = 2*ones(1,ss);onodes = 2;bnet = mk_dbn(intra, inter, ns, 'observed', onodes, 'eclass2', (1:ss)+ss);for i=1:2*ss bnet.CPD{i} = tabular_CPD(bnet, i);endT = 4;engine = {};engine{end+1} = jtree_unrolled_dbn_inf_engine(bnet, T);engine{end+1} = jtree_dbn_inf_engine(bnet);engine{end+1} = smoother_engine(jtree_2TBN_inf_engine(bnet));%engine{end+1} = smoother_engine(hmm_2TBN_inf_engine(bnet)); % observed nodes have childreninf_time = cmp_inference_dbn(bnet, engine, T)learning_time = cmp_learning_dbn(bnet, engine, T)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -