📄 slam_partial_kf.m
字号:
% See how well partial Kalman filter updates workseed = 0;rand('state', seed);randn('state', seed);nlandmarks = 6;T = 12;[A,B,C,Q,R,Qbig,Rbig,init_x,init_V,robot_block,landmark_block,... true_landmark_pos, true_robot_pos, true_data_assoc, ... obs_rel_pos, ctrl_signal] = mk_linear_slam(... 'nlandmarks', nlandmarks, 'T', T, 'ctrl', 'leftright', 'data-assoc', 'cycle');% exact[xe, Ve] = kalman_filter(obs_rel_pos, A, C, Qbig, Rbig, init_x, init_V, ... 'model', true_data_assoc, 'u', ctrl_signal, 'B', B);% approx%k = nlandmarks-1; % exactk = 3;ndx = {};for t=1:T landmarks = unique(true_data_assoc(t:-1:max(t-k,1))); tmp = [landmark_block(:, landmarks) robot_block']; ndx{t} = tmp(:);end[xa, Va] = kalman_filter(obs_rel_pos, A, C, Qbig, Rbig, init_x, init_V, ... 'model', true_data_assoc, 'u', ctrl_signal, 'B', B, ... 'ndx', ndx);nrows = 10;stepsize = T/(2*nrows);ts = 1:stepsize:T;if 1 % plot clim = [0 max(max(Va(:,:,end)))];figure(2)if 0 imagesc(Ve(1:2:end,1:2:end, T)) clim = get(gca,'clim');else i = 1; for t=ts(:)' subplot(nrows,2,i) i = i + 1; imagesc(Ve(1:2:end,1:2:end, t)) set(gca, 'clim', clim) colorbar endendsuptitle('exact')figure(3)if 0 imagesc(Va(1:2:end,1:2:end, T)) set(gca,'clim', clim)else i = 1; for t=ts(:)' subplot(nrows,2,i) i = i+1; imagesc(Va(1:2:end,1:2:end, t)) set(gca, 'clim', clim) colorbar endendsuptitle('approx')figure(4)i = 1;for t=ts(:)' subplot(nrows,2,i) i = i+1; Vd = Va(1:2:end,1:2:end, t) - Ve(1:2:end,1:2:end,t); imagesc(Vd) set(gca, 'clim', clim) colorbarendsuptitle('diff')end % all plotfor t=1:T %err(t)=rms(xa(:,t), xe(:,t)); err(t)=rms(xa(1:end-2,t), xe(1:end-2,t)); % exclude robotendfigure(5);plot(err)title('rms mean pos')for t=1:T i = 1:2*nlandmarks; denom = Ve(i,i,t) + (Ve(i,i,t)==0); Vd =(Va(i,i,t)-Ve(i,i,t)) ./ denom; Verr(t) = max(Vd(:));endfigure(6); plot(Verr)title('max relative Verr')
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -