⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 paskin1.m

📁 贝叶斯算法(matlab编写) 安装,添加目录 /home/ai2/murphyk/matlab/FullBNT
💻 M
字号:
% This is like robot1, except we only use a Kalman filter.% The goal is to study how the precision matrix changes.seed = 1;rand('state', seed);randn('state', seed);if 0  T = 20;  ctrl_signal = [repmat([1 0]', 1, T/4) repmat([0 1]', 1, T/4) ...		 repmat([-1 0]', 1, T/4) repmat([0 -1]', 1, T/4)];else  T = 60;  ctrl_signal = repmat([1 0]', 1, T);endnlandmarks = 6;if 0  true_landmark_pos = [1 1;		    4 1;		    4 4;		    1 4]';else  true_landmark_pos = 10*rand(2,nlandmarks);endif 0figure(1); clfhold onfor i=1:nlandmarks  %text(true_landmark_pos(1,i), true_landmark_pos(2,i), sprintf('L%d',i));  plot(true_landmark_pos(1,i), true_landmark_pos(2,i), '*')endhold offendinit_robot_pos = [0 0]';true_robot_pos = zeros(2, T);true_data_assoc = zeros(1, T);true_rel_dist = zeros(2, T);for t=1:T  if t>1    true_robot_pos(:,t) = true_robot_pos(:,t-1) + ctrl_signal(:,t);  else    true_robot_pos(:,t) = init_robot_pos + ctrl_signal(:,t);  end  nn = argmin(dist2(true_robot_pos(:,t)', true_landmark_pos'));  %true_data_assoc(t) = nn;  %true_data_assoc = wrap(t, nlandmarks); % observe 1, 2, 3, 4, 1, 2, ...  true_data_assoc  = sample_discrete(normalise(ones(1,nlandmarks)),1,T);  true_rel_dist(:,t) = true_landmark_pos(:, nn) - true_robot_pos(:,t);endR = 1e-3*eye(2); % noise added to observationQ = 1e-3*eye(2); % noise added to robot motion% Create data setobs_noise_seq = sample_gaussian([0 0]', R, T)';obs_rel_pos = true_rel_dist + obs_noise_seq;%obs_rel_pos = true_rel_dist;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Create params for inference% X(t) = A X(t-1) + B U(t) + noise(Q) % [L1]  = [1     ]  * [L1]       + [0]  * Ut  + [0   ]% [L2]    [  1   ]    [L2]         [0]          [ 0  ]% [R ]t   [     1]    [R ]t-1      [1]          [   Q]% Y(t)|S(t)=s  = C(s) X(t) + noise(R)% Yt|St=1 = [1 0 -1]  * [L1]  + R%                       [L2]    %                       [R ]    % Create indices into block structurebs = 2*ones(1, nlandmarks+1); % sizes of blocks in state spacerobot_block =  block(nlandmarks+1, bs);for i=1:nlandmarks  landmark_block(:,i) = block(i, bs)';endXsz = 2*(nlandmarks+1); % 2 values for each landmark plus robotYsz = 2; % observe relative locationUsz = 2; % input is (dx, dy)% create block-diagonal trans matrix for each switchA = zeros(Xsz, Xsz);for i=1:nlandmarks  bi = landmark_block(:,i);  A(bi, bi) = eye(2);endbi = robot_block;A(bi, bi) = eye(2);A = repmat(A, [1 1 nlandmarks]); % same for all switch values% create block-diagonal system covQbig = zeros(Xsz, Xsz);bi = robot_block;Qbig(bi,bi) = Q; % only add noise to robot motionQbig = repmat(Qbig, [1 1 nlandmarks]);% create input matrixB = zeros(Xsz, Usz);B(robot_block,:) = eye(2); % only add input to robot positionB = repmat(B, [1 1 nlandmarks]);% create observation matrix for each value of the switch node% C(:,:,i) = (0 ... I ... -I) where the I is in the i'th posn.% This computes L(i) - RC = zeros(Ysz, Xsz, nlandmarks);for i=1:nlandmarks  C(:, landmark_block(:,i), i) = eye(2);   C(:, robot_block, i) = -eye(2);end% create observation cov for each value of the switch nodeRbig = repmat(R, [1 1 nlandmarks]);% initial conditionsinit_x = zeros(Xsz, 1);init_v = zeros(Xsz, Xsz);bi = robot_block;init_x(bi) = init_robot_pos;%init_V(bi, bi) = 1e-5*eye(2); % very sure of robot posninit_V(bi, bi) = Q; % simualate uncertainty due to 1 motion stepfor i=1:nlandmarks  bi = landmark_block(:,i);  init_V(bi,bi)= 1e5*eye(2); % very uncertain of landmark psosns  %init_x(bi) = true_landmark_pos(:,i);  %init_V(bi,bi)= 1e-5*eye(2); % very sure of landmark psosnsend%k = nlandmarks-1; % exactk = 3;ndx = {};for t=1:T  landmarks = unique(true_data_assoc(t:-1:max(t-k,1)));  tmp = [landmark_block(:, landmarks) robot_block'];  ndx{t} = tmp(:);end[xa, Va] = kalman_filter(obs_rel_pos, A, C, Qbig, Rbig, init_x, init_V, ...				     'model', true_data_assoc, 'u', ctrl_signal, 'B', B, ...		       'ndx', ndx);[xe, Ve] = kalman_filter(obs_rel_pos, A, C, Qbig, Rbig, init_x, init_V, ...				     'model', true_data_assoc, 'u', ctrl_signal, 'B', B);if 0est_robot_pos = x(robot_block, :);est_robot_pos_cov = V(robot_block, robot_block, :);for i=1:nlandmarks  bi = landmark_block(:,i);  est_landmark_pos(:,i) = x(bi, T);  est_landmark_pos_cov(:,:,i) = V(bi, bi, T);endendnrows = 10;stepsize = T/(2*nrows);ts = 1:stepsize:T;if 1 % plot  clim = [0 max(max(Va(:,:,end)))];figure(2)if 0  imagesc(Ve(1:2:end,1:2:end, T))  clim = get(gca,'clim');else  i = 1;  for t=ts(:)'    subplot(nrows,2,i)    i = i + 1;    imagesc(Ve(1:2:end,1:2:end, t))    set(gca, 'clim', clim)    colorbar  endendsuptitle('exact')figure(3)if 0  imagesc(Va(1:2:end,1:2:end, T))  set(gca,'clim', clim)else  i = 1;  for t=ts(:)'    subplot(nrows,2,i)    i = i+1;    imagesc(Va(1:2:end,1:2:end, t))    set(gca, 'clim', clim)    colorbar  endendsuptitle('approx')figure(4)i = 1;for t=ts(:)'  subplot(nrows,2,i)  i = i+1;  Vd = Va(1:2:end,1:2:end, t) - Ve(1:2:end,1:2:end,t);  imagesc(Vd)  set(gca, 'clim', clim)  colorbarendsuptitle('diff')end % all plotfor t=1:T  i = 1:2*nlandmarks;  denom = Ve(i,i,t) + (Ve(i,i,t)==0);  Vd =(Va(i,i,t)-Ve(i,i,t)) ./ denom;  Verr(t) = max(Vd(:));endfigure(6); plot(Verr)title('max relative Verr')for t=1:T  %err(t)=rms(xa(:,t), xe(:,t));  err(t)=rms(xa(1:end-2,t), xe(1:end-2,t)); % exclude robotendfigure(5);plot(err)title('rms mean pos')

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -