📄 fhme.m
字号:
function risultati = fhme(net, nodes_info, data, n)
%HMEFWD Forward propagation through an HME model
%
% Each row of the (n x class_num) matrix 'risultati' containes the estimated class posterior prob.
%
% ----------------------------------------------------------------------------------------------------
% -> pierpaolo_b@hotmail.com or -> pampo@interfree.it
% ----------------------------------------------------------------------------------------------------
%
ns=net.node_sizes;
if nargin==3
ndata=n;
else
ndata=size(data, 1);
end
altezza=size(ns,2);
coeff=cell(altezza-1,1);
for m=1:ndata
%- i=2 --------------------------------------------------------------------------------------
s=struct(net.CPD{2});
if nodes_info(1,2)==0,
mu=[]; W=[]; predict=[];
mu=s.mean(:,:);
W=s.weights(:,:,:);
predict=mu(:,:)+W(:,:,:)*data(m,:)';
coeff{1,1}=predict';
elseif nodes_info(1,2)==1,
coeff{1,1}=fglm(s.glim{1}, data(m,:));
else,
coeff{1,1}=fmlp(s.mlp{1}, data(m,:));
end
%----------------------------------------------------------------------------------------------
if altezza>3,
for i=3:altezza-1,
s=[]; f=[]; dpsz=[];
f=family(net.dag,i); f=f(2:end-1); dpsz=prod(ns(f));
s=struct(net.CPD{i});
for j=1:dpsz,
if nodes_info(1,i)==1,
coeff{i-1,1}(j,:)=coeff{i-2,1}(1,j)*fglm(s.glim{j}, data(m,:));
else
coeff{i-1,1}(j,:)=coeff{i-2,1}(1,j)*fmlp(s.mlp{j}, data(m,:));
end
end
app=cat(2, coeff{i-1,1}(:)); coeff{i-1,1}=app'; clear app;
end
end
%- i=altezza ----------------------------------------------------------------------------------
if altezza>2,
i=altezza;
s=[]; f=[]; dpsz=[];
f=family(net.dag,i); f=f(2:end-1); dpsz=prod(ns(f));
s=struct(net.CPD{i});
if nodes_info(1,i)==0,
mu=[]; W=[];
mu=s.mean(:,:);
W=s.weights(:,:,:);
end
for j=1:dpsz,
if nodes_info(1,i)==0,
predict=[];
predict=mu(:,j)+W(:,:,j)*data(m,:)';
coeff{i-1,1}(j,:)=coeff{i-2,1}(1,j)*predict';
elseif nodes_info(1,i)==1,
coeff{i-1,1}(j,:)=coeff{i-2,1}(1,j)*fglm(s.glim{j}, data(m,:));
else
coeff{i-1,1}(j,:)=coeff{i-2,1}(1,j)*fmlp(s.mlp{j}, data(m,:));
end
end
end
%----------------------------------------------------------------------------------------------
risultati(m,:)=sum(coeff{altezza-1,1},1);
clear coeff; coeff=cell(altezza-1,1);
end
return
%-------------------------------------------------------------------
function [y, a] = fglm(net, x)
%GLMFWD Forward propagation through 1-layer net->GLM statistical model
ndata = size(x, 1);
a = x*net.w1 + ones(ndata, 1)*net.b1;
nout = size(a,2);
% Ensure that sum(exp(a), 2) does not overflow
maxcut = log(realmax) - log(nout);
% Ensure that exp(a) > 0
mincut = log(realmin);
a = min(a, maxcut);
a = max(a, mincut);
temp = exp(a);
y = temp./(sum(temp, 2)*ones(1,nout));
%-------------------------------------------------------------------
function [y, z, a] = fmlp(net, x)
%MLPFWD Forward propagation through 2-layer network.
ndata = size(x, 1);
z = tanh(x*net.w1 + ones(ndata, 1)*net.b1);
a = z*net.w2 + ones(ndata, 1)*net.b2;
temp = exp(a);
nout = size(a,2);
y = temp./(sum(temp,2)*ones(1,nout));
%-------------------------------------------------------------------
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -