⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 cmp_inference_static.m

📁 贝叶斯算法(matlab编写) 安装,添加目录 /home/ai2/murphyk/matlab/FullBNT
💻 M
字号:
function [time, engine] = cmp_inference_static(bnet, engine, varargin)% CMP_INFERENCE Compare several inference engines on a BN% function [time, engine] = cmp_inference_static(bnet, engine, ...)%% engine{i} is the i'th inference engine.% time(e) = elapsed time for doing inference with engine e%% The list below gives optional arguments [default value in brackets].%% exact - specifies which engines do exact inference [ 1:length(engine) ]% singletons_only - if 1, we only call marginal_nodes, else this  and marginal_family [0]% maximize - 1 means we do max-propagation, 0 means sum-propagation [0]% check_ll - 1 means we check that the log-likelihoods are correct [1]% observed - list of the observed ndoes [ bnet.observed ]% check_converged - list of loopy engines that should be checked for convergence [ [] ]%    If an engine has converged, it is added to the exact list.% set default paramsexact = 1:length(engine);singletons_only = 0;maximize = 0;check_ll = 1;observed = bnet.observed;check_converged = [];args = varargin;nargs = length(args);for i=1:2:nargs  switch args{i},   case 'exact', exact = args{i+1};   case 'singletons_only', singletons_only = args{i+1};   case 'maximize', maximize = args{i+1};   case 'check_ll', check_ll = args{i+1};   case 'observed', observed = args{i+1};   case 'check_converged', check_converged = args{i+1};   otherwise,    error(['unrecognized argument ' args{i}])  endendE = length(engine);ref = exact(1); % referenceN = length(bnet.dag);ev = sample_bnet(bnet);evidence = cell(1,N);evidence(observed) = ev(observed);%celldisp(evidence(observed))for i=1:E  tic;  if check_ll    [engine{i}, ll(i)] = enter_evidence(engine{i}, evidence, 'maximize', maximize);  else    engine{i} = enter_evidence(engine{i}, evidence, 'maximize', maximize);  end  time(i)=toc;endfor i=check_converged(:)'  niter = loopy_converged(engine{i});  if niter > 0    fprintf('loopy engine %d  converged in %d iterations\n', i, niter);    exact = myunion(exact, i);  else    fprintf('loopy engine %d has not converged\n', i);  endendcmp = exact(2:end);if check_ll  for i=cmp(:)'    assert(approxeq(ll(ref), ll(i)));  endendhnodes = mysetdiff(1:N, observed);if ~singletons_only  get_marginals(engine, hnodes, exact, 0);endget_marginals(engine, hnodes, exact, 1);%%%%%%%%%%function get_marginals(engine, hnodes, exact, singletons)bnet = bnet_from_engine(engine{1});N = length(bnet.dag);cnodes_bitv = zeros(1,N);cnodes_bitv(bnet.cnodes) = 1;ref = exact(1); % referencecmp = exact(2:end);E = length(engine);for n=hnodes(:)'  for e=1:E    if singletons      m{e} = marginal_nodes(engine{e}, n);    else      m{e} = marginal_family(engine{e}, n);    end  end  for e=cmp(:)'    if cnodes_bitv(n)      assert(approxeq(m{ref}.mu, m{e}.mu))      assert(approxeq(m{ref}.Sigma, m{e}.Sigma))    else      assert(approxeq(m{ref}.T, m{e}.T))    end    assert(isequal(m{e}.domain, m{ref}.domain));  endend

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -