⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 mixexp1.m

📁 贝叶斯算法(matlab编写) 安装,添加目录 /home/ai2/murphyk/matlab/FullBNT
💻 M
字号:
% Fit a piece-wise linear regression model.% Here is the model%%  X \%  | |%  Q |%  | /%  Y%% where all arcs point down.% We condition everything on X, so X is a root node. Q is a softmax, and Y is a linear Gaussian.% Q is hidden, X and Y are observed.X = 1;Q = 2;Y = 3;dag = zeros(3,3);dag(X,[Q Y]) = 1;dag(Q,Y) = 1;ns = [1 2 1]; % make X and Y scalars, and have 2 expertsdnodes = [2];onodes = [1 3];bnet = mk_bnet(dag, ns, 'discrete', dnodes, 'observed', onodes);w = [-5 5];  % w(:,i) is the normal vector to the i'th decisions boundaryb = [0 0];  % b(i) is the offset (bias) to the i'th decisions boundarymu = [0 0];sigma = 1;Sigma = repmat(sigma*eye(ns(Y)), [ns(Y) ns(Y) ns(Q)]);W = [-1 1];W2 = reshape(W, [ns(Y) ns(X) ns(Q)]);bnet.CPD{1} = root_CPD(bnet, 1);bnet.CPD{2} = softmax_CPD(bnet, 2, w, b);bnet.CPD{3} = gaussian_CPD(bnet, 3, 'mean', mu, 'cov', Sigma, 'weights', W2);% Check inferencex = 0.1;ystar = 1;engine = jtree_inf_engine(bnet);[engine, loglik] = enter_evidence(engine, {x, [], ystar});Qpost = marginal_nodes(engine, 2);% eta(i,:) = softmax (gating) params for expert ieta = [b' w'];% theta(i,:) = regression vector for expert itheta = [mu' W'];% yhat(i) = E[y | Q=i, x] = prediction of i'th expertx1 = [1 x]';yhat = theta * x1;% gate_prior(i,:) = Pr(Q=i | x)gate_prior = normalise(exp(eta * x1));% cond_lik(i) = Pr(y | Q=i, x)cond_lik = (1/(sqrt(2*pi)*sigma)) * exp(-(0.5/sigma^2) * ((ystar - yhat) .* (ystar - yhat)));% gate_posterior(i,:) = Pr(Q=i | x, y)[gate_posterior, lik] = normalise(gate_prior .* cond_lik);assert(approxeq(gate_posterior(:), Qpost.T(:)));assert(approxeq(log(lik), loglik));

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -