📄 mk_hmm_bnet.m
字号:
function bnet = mk_hmm_bnet(T, Q, O, cts_obs, param_tying)% MK_HMM_BNET Make a (static) bnet to represent a hidden Markov model% bnet = mk_hmm_bnet(T, Q, O, cts_obs, param_tying)%% T = num time slices% Q = num hidden states% O = size of the observed node (num discrete values or length of vector)% cts_obs - 1 means the observed node is a continuous-valued vector, 0 means it's discrete% param_tying - 1 means we create 3 CPDs, 0 means we create 1 CPD per nodeN = 2*T;dag = zeros(N);%hnodes = 1:2:2*T;hnodes = 1:T;for i=1:T-1 dag(hnodes(i), hnodes(i+1))=1;end%onodes = 2:2:2*T;onodes = T+1:2*T;for i=1:T dag(hnodes(i), onodes(i)) = 1;endif cts_obs dnodes = hnodes;else dnodes = 1:N;endns = ones(1,N);ns(hnodes) = Q;ns(onodes) = O;if param_tying H1class = 1; Hclass = 2; Oclass = 3; eclass = ones(1,N); eclass(hnodes(2:end)) = Hclass; eclass(hnodes(1)) = H1class; eclass(onodes) = Oclass;else eclass = 1:N;endbnet = mk_bnet(dag, ns, 'observed', onodes, 'discrete', dnodes, 'equiv_class', eclass);hnodes = mysetdiff(1:N, onodes);if ~param_tying for i=hnodes(:)' bnet.CPD{i} = tabular_CPD(bnet, i); end if cts_obs for i=onodes(:)' bnet.CPD{i} = gaussian_CPD(bnet, i); end else for i=onodes(:)' bnet.CPD{i} = tabular_CPD(bnet, i); end endelse bnet.CPD{H1class} = tabular_CPD(bnet, hnodes(1)); % prior bnet.CPD{Hclass} = tabular_CPD(bnet, hnodes(2)); % transition matrix if cts_obs bnet.CPD{Oclass} = gaussian_CPD(bnet, onodes(1)); else bnet.CPD{Oclass} = tabular_CPD(bnet, onodes(1)); endend
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -