📄 gibbs_test1.m
字号:
function gibbs_test1()
disp('gibbs test 1')
rand('state', 0);
randn('state', 0);
%[bnet onodes hnodes qnodes] = gibbs_ex_1;
[bnet onodes hnodes qnodes] = gibbs_ex_2;
je = jtree_inf_engine(bnet);
ge = gibbs_sampling_inf_engine (bnet, 'T', 50, 'burnin', 0, ...
'order', [2 2 1 2 1]);
ev = sample_bnet(bnet);
evidence = cell(length(bnet.dag), 1);
evidence(onodes) = ev(onodes);
[je lj] = enter_evidence(je, evidence);
[ge lg] = enter_evidence(ge, evidence);
mj = marginal_nodes(je, qnodes);
[mg ge] = marginal_nodes (ge, qnodes);
for t = 1:100
[mg ge] = marginal_nodes (ge, qnodes, 'reset_counts', 0);
diff = mj.T - mg.T;
err(t) = norm (diff(:), 1);
end
clf
plot(err);
%title('error vs num. Gibbs samples')
%%%%%%%
function [bnet, onodes, hnodes, qnodes] = gibbs_ex_1
% bnet = gibbs_ex_1
% a simple network to test the gibbs sampling engine
% 1
% / | \
% 2 3 4
% | | |
% 5 6 7
% \/ \/
% 8 9
% where all arcs point downwards
N = 9;
dag = zeros(N,N);
dag(1,2)=1; dag(1,3)=1; dag(1,4)=1;
dag(2,5)=1; dag(3,6)=1; dag(4,7)=1;
dag(5,8)=1; dag(6,8)=1; dag(6,9)=1; dag(7,9) = 1;
onodes = 8:9;
hnodes = 1:7;
qnodes = [1 2 6];
ns = [2 3 4 3 5 2 4 3 2];
eclass = [1 2 3 2 4 5 6 7 8];
bnet = mk_bnet (dag, ns, 'equiv_class', eclass);
for i = 1:3
bnet.CPD{i} = tabular_CPD(bnet, i);
end
for i = 4:8
bnet.CPD{i} = tabular_CPD(bnet, i+1);
end
%%%%%%%
function [bnet, onodes, hnodes, qnodes] = gibbs_ex_2
% bnet = gibbs_ex_2
% a very simple network
%
% 1 2
% \ /
% 3
N = 3;
dag = zeros(N,N);
dag(1,3)=1; dag(2,3)=1;
onodes = 3;
hnodes = 1:2;
qnodes = 1:2;
ns = [2 4 3];
eclass = [1 2 3];
bnet = mk_bnet (dag, ns, 'equiv_class', eclass);
for i = 1:3
bnet.CPD{i} = tabular_CPD(bnet, i);
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -