📄 vj.c
字号:
/*
* Routines to compress and uncompess tcp packets (for transmission
* over low speed serial lines.
*
* Copyright (c) 1989 Regents of the University of California.
* All rights reserved.
*
* Redistribution and use in source and binary forms are permitted
* provided that the above copyright notice and this paragraph are
* duplicated in all such forms and that any documentation,
* advertising materials, and other materials related to such
* distribution and use acknowledge that the software was developed
* by the University of California, Berkeley. The name of the
* University may not be used to endorse or promote products derived
* from this software without specific prior written permission.
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
* WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
* Van Jacobson (van@helios.ee.lbl.gov), Dec 31, 1989:
* Initial distribution.
*
* Modified June 1993 by Paul Mackerras, paulus@cs.anu.edu.au,
* so that the entire packet being decompressed doesn't have
* to be in contiguous memory (just the compressed header).
*
* Modified March 1998 by Guy Lancaster, glanca@gesn.com,
* for a 16 bit processor.
*/
#include "lwip/opt.h"
#if PPP_SUPPORT /* don't build if not configured for use in lwipopts.h */
#include "ppp.h"
#include "pppdebug.h"
#include "vj.h"
#include <string.h>
#if VJ_SUPPORT
#if LINK_STATS
#define INCR(counter) ++comp->stats.counter
#else
#define INCR(counter)
#endif
#if defined(NO_CHAR_BITFIELDS)
#define getip_hl(base) ((base).ip_hl_v&0xf)
#define getth_off(base) (((base).th_x2_off&0xf0)>>4)
#else
#define getip_hl(base) ((base).ip_hl)
#define getth_off(base) ((base).th_off)
#endif
void
vj_compress_init(struct vjcompress *comp)
{
register u_int i;
register struct cstate *tstate = comp->tstate;
#if MAX_SLOTS == 0
memset((char *)comp, 0, sizeof(*comp));
#endif
comp->maxSlotIndex = MAX_SLOTS - 1;
comp->compressSlot = 0; /* Disable slot ID compression by default. */
for (i = MAX_SLOTS - 1; i > 0; --i) {
tstate[i].cs_id = i;
tstate[i].cs_next = &tstate[i - 1];
}
tstate[0].cs_next = &tstate[MAX_SLOTS - 1];
tstate[0].cs_id = 0;
comp->last_cs = &tstate[0];
comp->last_recv = 255;
comp->last_xmit = 255;
comp->flags = VJF_TOSS;
}
/* ENCODE encodes a number that is known to be non-zero. ENCODEZ
* checks for zero (since zero has to be encoded in the long, 3 byte
* form).
*/
#define ENCODE(n) { \
if ((u_short)(n) >= 256) { \
*cp++ = 0; \
cp[1] = (n); \
cp[0] = (n) >> 8; \
cp += 2; \
} else { \
*cp++ = (n); \
} \
}
#define ENCODEZ(n) { \
if ((u_short)(n) >= 256 || (u_short)(n) == 0) { \
*cp++ = 0; \
cp[1] = (n); \
cp[0] = (n) >> 8; \
cp += 2; \
} else { \
*cp++ = (n); \
} \
}
#define DECODEL(f) { \
if (*cp == 0) {\
u32_t tmp = ntohl(f) + ((cp[1] << 8) | cp[2]); \
(f) = htonl(tmp); \
cp += 3; \
} else { \
u32_t tmp = ntohl(f) + (u32_t)*cp++; \
(f) = htonl(tmp); \
} \
}
#define DECODES(f) { \
if (*cp == 0) {\
u_short tmp = ntohs(f) + (((u_short)cp[1] << 8) | cp[2]); \
(f) = htons(tmp); \
cp += 3; \
} else { \
u_short tmp = ntohs(f) + (u_short)*cp++; \
(f) = htons(tmp); \
} \
}
#define DECODEU(f) { \
if (*cp == 0) {\
(f) = htons(((u_short)cp[1] << 8) | cp[2]); \
cp += 3; \
} else { \
(f) = htons((u_short)*cp++); \
} \
}
/*
* vj_compress_tcp - Attempt to do Van Jacobsen header compression on a
* packet. This assumes that nb and comp are not null and that the first
* buffer of the chain contains a valid IP header.
* Return the VJ type code indicating whether or not the packet was
* compressed.
*/
u_int
vj_compress_tcp(struct vjcompress *comp, struct pbuf *pb)
{
register struct ip *ip = (struct ip *)pb->payload;
register struct cstate *cs = comp->last_cs->cs_next;
register u_short hlen = getip_hl(*ip);
register struct tcphdr *oth;
register struct tcphdr *th;
register u_short deltaS, deltaA;
register u_long deltaL;
register u_int changes = 0;
u_char new_seq[16];
register u_char *cp = new_seq;
/*
* Check that the packet is IP proto TCP.
*/
if (ip->ip_p != IPPROTO_TCP) {
return (TYPE_IP);
}
/*
* Bail if this is an IP fragment or if the TCP packet isn't
* `compressible' (i.e., ACK isn't set or some other control bit is
* set).
*/
if ((ip->ip_off & htons(0x3fff)) || pb->tot_len < 40) {
return (TYPE_IP);
}
th = (struct tcphdr *)&((long *)ip)[hlen];
if ((th->th_flags & (TCP_SYN|TCP_FIN|TCP_RST|TCP_ACK)) != TCP_ACK) {
return (TYPE_IP);
}
/*
* Packet is compressible -- we're going to send either a
* COMPRESSED_TCP or UNCOMPRESSED_TCP packet. Either way we need
* to locate (or create) the connection state. Special case the
* most recently used connection since it's most likely to be used
* again & we don't have to do any reordering if it's used.
*/
INCR(vjs_packets);
if (ip->ip_src.s_addr != cs->cs_ip.ip_src.s_addr
|| ip->ip_dst.s_addr != cs->cs_ip.ip_dst.s_addr
|| *(long *)th != ((long *)&cs->cs_ip)[getip_hl(cs->cs_ip)]) {
/*
* Wasn't the first -- search for it.
*
* States are kept in a circularly linked list with
* last_cs pointing to the end of the list. The
* list is kept in lru order by moving a state to the
* head of the list whenever it is referenced. Since
* the list is short and, empirically, the connection
* we want is almost always near the front, we locate
* states via linear search. If we don't find a state
* for the datagram, the oldest state is (re-)used.
*/
register struct cstate *lcs;
register struct cstate *lastcs = comp->last_cs;
do {
lcs = cs; cs = cs->cs_next;
INCR(vjs_searches);
if (ip->ip_src.s_addr == cs->cs_ip.ip_src.s_addr
&& ip->ip_dst.s_addr == cs->cs_ip.ip_dst.s_addr
&& *(long *)th == ((long *)&cs->cs_ip)[getip_hl(cs->cs_ip)]) {
goto found;
}
} while (cs != lastcs);
/*
* Didn't find it -- re-use oldest cstate. Send an
* uncompressed packet that tells the other side what
* connection number we're using for this conversation.
* Note that since the state list is circular, the oldest
* state points to the newest and we only need to set
* last_cs to update the lru linkage.
*/
INCR(vjs_misses);
comp->last_cs = lcs;
hlen += getth_off(*th);
hlen <<= 2;
/* Check that the IP/TCP headers are contained in the first buffer. */
if (hlen > pb->len) {
return (TYPE_IP);
}
goto uncompressed;
found:
/*
* Found it -- move to the front on the connection list.
*/
if (cs == lastcs) {
comp->last_cs = lcs;
} else {
lcs->cs_next = cs->cs_next;
cs->cs_next = lastcs->cs_next;
lastcs->cs_next = cs;
}
}
oth = (struct tcphdr *)&((long *)&cs->cs_ip)[hlen];
deltaS = hlen;
hlen += getth_off(*th);
hlen <<= 2;
/* Check that the IP/TCP headers are contained in the first buffer. */
if (hlen > pb->len) {
PPPDEBUG((LOG_INFO, "vj_compress_tcp: header len %d spans buffers\n", hlen));
return (TYPE_IP);
}
/*
* Make sure that only what we expect to change changed. The first
* line of the `if' checks the IP protocol version, header length &
* type of service. The 2nd line checks the "Don't fragment" bit.
* The 3rd line checks the time-to-live and protocol (the protocol
* check is unnecessary but costless). The 4th line checks the TCP
* header length. The 5th line checks IP options, if any. The 6th
* line checks TCP options, if any. If any of these things are
* different between the previous & current datagram, we send the
* current datagram `uncompressed'.
*/
if (((u_short *)ip)[0] != ((u_short *)&cs->cs_ip)[0]
|| ((u_short *)ip)[3] != ((u_short *)&cs->cs_ip)[3]
|| ((u_short *)ip)[4] != ((u_short *)&cs->cs_ip)[4]
|| getth_off(*th) != getth_off(*oth)
|| (deltaS > 5 && BCMP(ip + 1, &cs->cs_ip + 1, (deltaS - 5) << 2))
|| (getth_off(*th) > 5 && BCMP(th + 1, oth + 1, (getth_off(*th) - 5) << 2))) {
goto uncompressed;
}
/*
* Figure out which of the changing fields changed. The
* receiver expects changes in the order: urgent, window,
* ack, seq (the order minimizes the number of temporaries
* needed in this section of code).
*/
if (th->th_flags & TCP_URG) {
deltaS = ntohs(th->th_urp);
ENCODEZ(deltaS);
changes |= NEW_U;
} else if (th->th_urp != oth->th_urp) {
/* argh! URG not set but urp changed -- a sensible
* implementation should never do this but RFC793
* doesn't prohibit the change so we have to deal
* with it. */
goto uncompressed;
}
if ((deltaS = (u_short)(ntohs(th->th_win) - ntohs(oth->th_win))) != 0) {
ENCODE(deltaS);
changes |= NEW_W;
}
if ((deltaL = ntohl(th->th_ack) - ntohl(oth->th_ack)) != 0) {
if (deltaL > 0xffff) {
goto uncompressed;
}
deltaA = (u_short)deltaL;
ENCODE(deltaA);
changes |= NEW_A;
}
if ((deltaL = ntohl(th->th_seq) - ntohl(oth->th_seq)) != 0) {
if (deltaL > 0xffff) {
goto uncompressed;
}
deltaS = (u_short)deltaL;
ENCODE(deltaS);
changes |= NEW_S;
}
switch(changes) {
case 0:
/*
* Nothing changed. If this packet contains data and the
* last one didn't, this is probably a data packet following
* an ack (normal on an interactive connection) and we send
* it compressed. Otherwise it's probably a retransmit,
* retransmitted ack or window probe. Send it uncompressed
* in case the other side missed the compressed version.
*/
if (ip->ip_len != cs->cs_ip.ip_len &&
ntohs(cs->cs_ip.ip_len) == hlen) {
break;
}
/* (fall through) */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -