⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 getpoints.java

📁 用于multivariate时间序列分类
💻 JAVA
字号:
/** *  Single classifier solution. That is to say, we cluster all the instances *  using the same clustering algorithms.  *  *  * @author Waleed Kadous * @version $Id: GetPoints.java,v 1.1.1.1 2002/06/28 07:36:16 waleed Exp $ */package tclass;   import tclass.util.*; // import tclass.learnalg.*; import weka.classifiers.*; import weka.classifiers.j48.*; import weka.attributeSelection.*; import weka.filters.*; import weka.core.*; import java.io.*; public class GetPoints {    // Ok. What we are going to do is to separate the learning task in     // an interesting way.     // First of all, though, the standard stuff        String domDescFile = "sl.tdd";     String trainDataFile = "sl.tsl";      String settingsFile = "test.tal";     String outputFile = "allEvents.dat";     boolean classLabels = false;     void parseArgs(String[] args){        for(int i=0; i < args.length; i++){            if(args[i].equals("-tr")){                trainDataFile = args[++i];             }            if(args[i].equals("-settings")){                settingsFile = args[++i];             }            if(args[i].equals("-o")){                outputFile = args[++i];             }            if(args[i].equals("-c")){                classLabels = true;             }        }    }    public static void main(String[] args) throws Exception {        Debug.setDebugLevel(Debug.PROGRESS);         GetPoints thisExp = new GetPoints();         thisExp.parseArgs(args);         DomDesc domDesc = new DomDesc(thisExp.domDescFile);         ClassStreamVecI trainStreamData = new            ClassStreamVec(thisExp.trainDataFile, domDesc);         Debug.dp(Debug.PROGRESS, "PROGRESS: Data read in");          Settings settings = new Settings(thisExp.settingsFile, domDesc);                 EventExtractor evExtractor = settings.getEventExtractor();         // Global data is likely to be included in every model; so we        // might as well calculated now        ClassStreamEventsVecI trainEventData =            evExtractor.extractEvents(trainStreamData);         Debug.dp(Debug.PROGRESS, "PROGRESS: Events extracted");          // System.out.println(trainEventData.toString());         // Now we want the clustering algorithms only to cluster        // instances of each class. Make an array of clusterers,         // one per class.         EventDescVecI eventDescVec = evExtractor.getDescription();         EventClusterer eventClusterer = settings.getEventClusterer();         Debug.dp(Debug.PROGRESS, "PROGRESS: Data rearranged.");          //And now load it up.                 FileWriter fw = new FileWriter(thisExp.outputFile);         fw.write(eventClusterer.printAllData(trainEventData,thisExp.classLabels));     }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -