📄 toarff.java
字号:
/** * ToArff.java: Converts a dataset into a format palatable to * Weka's learners. Makes it easier to explore the data. * * * @author Waleed Kadous * @version $Id: ToArff.java,v 1.1 2002/08/02 05:07:52 waleed Exp $ * $Log: ToArff.java,v $ * Revision 1.1 2002/08/02 05:07:52 waleed * *** empty log message *** * */package tclass; import tclass.clusteralg.*; import tclass.util.*; // import tclass.learnalg.*; import weka.classifiers.*; import weka.classifiers.j48.*; import weka.attributeSelection.*; import weka.filters.*; import weka.core.*; import java.io.*; import java.util.*; public class ToArff { // Ok. What we are going to do is to separate the learning task in // an interesting way. // First of all, though, the standard stuff String domDescFile = "sl.tdd"; String inFile = "sl.tsl"; // String globalDesc = "test._gc"; // String evExtractDesc = "test._ee"; String settingsFile = "test.tal"; String learnerStuff = "weka.classifiers.j48.J48"; String outFile = "default.arff"; boolean featureSel = false; boolean makeDesc = false; boolean trainResults = false; void parseArgs(String[] args){ for(int i=0; i < args.length; i++){ if(args[i].equals("-in")){ inFile = args[++i]; } if(args[i].equals("-out")){ outFile = args[++i]; } if(args[i].equals("-dd")){ domDescFile = args[++i]; } if(args[i].equals("-settings")){ settingsFile = args[++i]; } if(args[i].equals("-fs")){ featureSel = true; } if(args[i].equals("-md")){ makeDesc = true; } if(args[i].equals("-trainres")){ trainResults = true; } if(args[i].equals("-l")){ learnerStuff = args[++i]; learnerStuff = learnerStuff.replace(':', ' '); System.err.println("Learner String is: " + learnerStuff); } } } // Alright. This is downright funky hacky stuff. public static void main(String[] args) throws Exception { Debug.setDebugLevel(Debug.PROGRESS); ToArff thisExp = new ToArff(); thisExp.parseArgs(args); DomDesc domDesc = new DomDesc(thisExp.domDescFile); ClassStreamVecI trainStreamData = new ClassStreamVec(thisExp.inFile, domDesc); Debug.dp(Debug.PROGRESS, "PROGRESS: Data read in"); Settings settings = new Settings(thisExp.settingsFile, domDesc); EventExtractor evExtractor = settings.getEventExtractor(); // Global data is likely to be included in every model; so we // might as well calculated now GlobalCalc globalCalc = settings.getGlobalCalc(); ClassStreamAttValVecI trainGlobalData = globalCalc.applyGlobals(trainStreamData); // And we might as well extract the events. Debug.dp(Debug.PROGRESS, "PROGRESS: Globals calculated."); Debug.dp(Debug.PROGRESS, "Train: " + trainGlobalData.size()); ClassStreamEventsVecI trainEventData = evExtractor.extractEvents(trainStreamData); Debug.dp(Debug.PROGRESS, "PROGRESS: Events extracted"); // System.out.println(trainEventData.toString()); // Now we want the clustering algorithms only to cluster // instances of each class. Make an array of clusterers, // one per class. int numClasses = domDesc.getClassDescVec().size(); EventDescVecI eventDescVec = evExtractor.getDescription(); EventClusterer eventClusterer = settings.getEventClusterer(); Debug.dp(Debug.PROGRESS, "PROGRESS: Data rearranged."); //And now load it up. StreamEventsVecI trainEventSEV = trainEventData.getStreamEventsVec(); ClassificationVecI trainEventCV = trainEventData.getClassVec(); int numTrainStreams = trainEventCV.size(); ClusterVecI clusters = eventClusterer.clusterEvents(trainEventData); Debug.dp(Debug.PROGRESS, "PROGRESS: Clustering complete"); Debug.dp(Debug.PROGRESS, "Clusters are:"); Debug.dp(Debug.PROGRESS, "\n" + eventClusterer.getMapping()); Debug.dp(Debug.PROGRESS, "PROGRESS: Clustering complete. "); // But wait! There's more! There is always more. // The first thing was only useful for clustering. // Now attribution. We want to attribute all the data. So we are going // to have one dataset for each learner. // First set up the attributors. Attributor attribs = new Attributor(domDesc, clusters, eventClusterer.getDescription()); Debug.dp(Debug.PROGRESS, "PROGRESS: AttributorMkr complete."); ClassStreamAttValVecI trainEventAtts =attribs.attribute(trainStreamData, trainEventData); Debug.dp(Debug.PROGRESS, "PROGRESS: Attribution complete."); // Combine all data sources. For now, globals go in every // one. Combiner c = new Combiner(); ClassStreamAttValVecI trainAtts = c.combine(trainGlobalData, trainEventAtts); trainStreamData = null; trainEventSEV = null; trainEventCV = null; if(!thisExp.makeDesc){ clusters = null; eventClusterer = null; } attribs = null; System.gc(); // So now we have the raw data in the correct form for each // attributor. // And now, we can construct a learner for each case. // Well, for now, I'm going to do something completely crazy. // Let's run each classifier nonetheless over the whole data // ... and see what the hell happens. Maybe some voting scheme // is possible!! This is a strange form of ensemble // classifier. // Each naive bayes algorithm only gets one Debug.setDebugLevel(Debug.PROGRESS); int[] selectedIndices = null; String [] classifierSpec = Utils.splitOptions(thisExp.learnerStuff); if (classifierSpec.length == 0) { throw new Exception("Invalid classifier specification string"); } String classifierName = classifierSpec[0]; classifierSpec[0] = ""; Classifier learner = Classifier.forName(classifierName, classifierSpec); Debug.dp(Debug.PROGRESS, "PROGRESS: Beginning format conversion for class "); Instances data = WekaBridge.makeInstances(trainAtts, "Train "); Debug.dp(Debug.PROGRESS, "PROGRESS: Conversion complete. Starting learning"); if(thisExp.featureSel){ Debug.dp(Debug.PROGRESS, "PROGRESS: Doing feature selection"); BestFirst bfs = new BestFirst(); CfsSubsetEval cfs = new CfsSubsetEval(); cfs.buildEvaluator(data); selectedIndices = bfs.search(cfs, data); // Now extract the features. System.err.print("Selected features: "); String featureString = new String(); for(int j=0; j < selectedIndices.length; j++){ featureString += (selectedIndices[j] +1)+ ","; } featureString += ("last"); System.err.println(featureString); // Now apply the filter. AttributeFilter af = new AttributeFilter(); af.setInvertSelection(true); af.setAttributeIndices(featureString); af.inputFormat(data); data = af.useFilter(data, af); } try { FileWriter fw = new FileWriter(thisExp.outFile); fw.write(data.toString()); fw.close(); } catch(Exception e){ throw new Exception("Could not write to output file. "); } }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -