⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 toarff.java

📁 用于multivariate时间序列分类
💻 JAVA
字号:
/** * ToArff.java: Converts a dataset into a format palatable to  * Weka's learners. Makes it easier to explore the data.  *  *  * @author Waleed Kadous * @version $Id: ToArff.java,v 1.1 2002/08/02 05:07:52 waleed Exp $ * $Log: ToArff.java,v $ * Revision 1.1  2002/08/02 05:07:52  waleed * *** empty log message *** * */package tclass;  import tclass.clusteralg.*; import tclass.util.*; // import tclass.learnalg.*; import weka.classifiers.*; import weka.classifiers.j48.*; import weka.attributeSelection.*; import weka.filters.*; import weka.core.*; import java.io.*; import java.util.*; public class ToArff {    // Ok. What we are going to do is to separate the learning task in     // an interesting way.     // First of all, though, the standard stuff        String domDescFile = "sl.tdd";     String inFile = "sl.tsl";     // String globalDesc = "test._gc";     // String evExtractDesc = "test._ee";    String settingsFile = "test.tal";     String learnerStuff = "weka.classifiers.j48.J48";     String outFile = "default.arff";    boolean featureSel = false;     boolean makeDesc = false;     boolean trainResults = false;     void parseArgs(String[] args){        for(int i=0; i < args.length; i++){            if(args[i].equals("-in")){                inFile = args[++i];             }	    	    if(args[i].equals("-out")){		outFile = args[++i]; 	    }            if(args[i].equals("-dd")){                domDescFile = args[++i];             }            if(args[i].equals("-settings")){                settingsFile = args[++i];             }            if(args[i].equals("-fs")){                featureSel = true;             }            if(args[i].equals("-md")){                makeDesc = true;             }            if(args[i].equals("-trainres")){                trainResults = true;             }            if(args[i].equals("-l")){                learnerStuff = args[++i];                 learnerStuff = learnerStuff.replace(':', ' ');                 System.err.println("Learner String is: " + learnerStuff);             }        }    }    // Alright. This is downright funky hacky stuff.         public static void main(String[] args) throws Exception {        Debug.setDebugLevel(Debug.PROGRESS);         ToArff thisExp = new ToArff();         thisExp.parseArgs(args);         DomDesc domDesc = new DomDesc(thisExp.domDescFile);         ClassStreamVecI trainStreamData = new            ClassStreamVec(thisExp.inFile, domDesc);         Debug.dp(Debug.PROGRESS, "PROGRESS: Data read in");          Settings settings = new Settings(thisExp.settingsFile, domDesc);                 EventExtractor evExtractor = settings.getEventExtractor();         // Global data is likely to be included in every model; so we        // might as well calculated now        GlobalCalc globalCalc = settings.getGlobalCalc();         ClassStreamAttValVecI trainGlobalData =            globalCalc.applyGlobals(trainStreamData);        // And we might as well extract the events.         Debug.dp(Debug.PROGRESS, "PROGRESS: Globals calculated.");          Debug.dp(Debug.PROGRESS, "Train: " + trainGlobalData.size());          ClassStreamEventsVecI trainEventData =            evExtractor.extractEvents(trainStreamData);         Debug.dp(Debug.PROGRESS, "PROGRESS: Events extracted");          // System.out.println(trainEventData.toString());         // Now we want the clustering algorithms only to cluster        // instances of each class. Make an array of clusterers,         // one per class.         int numClasses = domDesc.getClassDescVec().size();         EventDescVecI eventDescVec = evExtractor.getDescription();         EventClusterer eventClusterer = settings.getEventClusterer();         Debug.dp(Debug.PROGRESS, "PROGRESS: Data rearranged.");          //And now load it up.         StreamEventsVecI trainEventSEV =            trainEventData.getStreamEventsVec();         ClassificationVecI trainEventCV = trainEventData.getClassVec();        int numTrainStreams = trainEventCV.size();         ClusterVecI clusters = eventClusterer.clusterEvents(trainEventData);         Debug.dp(Debug.PROGRESS, "PROGRESS: Clustering complete");         Debug.dp(Debug.PROGRESS, "Clusters are:");         Debug.dp(Debug.PROGRESS, "\n" + eventClusterer.getMapping());         Debug.dp(Debug.PROGRESS, "PROGRESS: Clustering complete. ");          // But wait! There's more! There is always more.         // The first thing was only useful for clustering.         // Now attribution. We want to attribute all the data. So we are going         // to have one dataset for each learner.         // First set up the attributors.         Attributor attribs = new Attributor(domDesc, clusters,                                             eventClusterer.getDescription());         Debug.dp(Debug.PROGRESS, "PROGRESS: AttributorMkr complete.");                 ClassStreamAttValVecI trainEventAtts =attribs.attribute(trainStreamData, trainEventData);         Debug.dp(Debug.PROGRESS, "PROGRESS: Attribution complete.");         // Combine all data sources. For now, globals go in every        // one.         Combiner c = new Combiner();         ClassStreamAttValVecI trainAtts = c.combine(trainGlobalData,                                            trainEventAtts);         trainStreamData = null;         trainEventSEV = null;         trainEventCV = null;         if(!thisExp.makeDesc){            clusters = null;             eventClusterer = null;         }        attribs = null;         System.gc();         // So now we have the raw data in the correct form for each        // attributor.         // And now, we can construct a learner for each case.         // Well, for now, I'm going to do something completely crazy.         // Let's run each classifier nonetheless over the whole data        // ... and see what the hell happens. Maybe some voting scheme         // is possible!! This is a strange form of ensemble        // classifier.         // Each naive bayes algorithm only gets one         Debug.setDebugLevel(Debug.PROGRESS);         int[] selectedIndices = null;          String [] classifierSpec = Utils.splitOptions(thisExp.learnerStuff);        if (classifierSpec.length == 0) {            throw new Exception("Invalid classifier specification string");        }                String classifierName = classifierSpec[0];        classifierSpec[0] = "";        Classifier learner = Classifier.forName(classifierName, classifierSpec);        Debug.dp(Debug.PROGRESS, "PROGRESS: Beginning format conversion for class ");         Instances  data = WekaBridge.makeInstances(trainAtts, "Train ");        Debug.dp(Debug.PROGRESS, "PROGRESS: Conversion complete. Starting learning");            if(thisExp.featureSel){                Debug.dp(Debug.PROGRESS, "PROGRESS: Doing feature selection");                    BestFirst bfs = new BestFirst();                CfsSubsetEval cfs = new CfsSubsetEval();                 cfs.buildEvaluator(data);                 selectedIndices = bfs.search(cfs, data);                 // Now extract the features.                 System.err.print("Selected features: ");                String featureString = new String();                 for(int j=0; j < selectedIndices.length; j++){                    featureString += (selectedIndices[j] +1)+ ",";                }                featureString += ("last");                 System.err.println(featureString);                // Now apply the filter.                 AttributeFilter af = new AttributeFilter();                 af.setInvertSelection(true);                 af.setAttributeIndices(featureString);                 af.inputFormat(data);                 data = af.useFilter(data, af); 		}	try {	    FileWriter fw = new FileWriter(thisExp.outFile); 	    fw.write(data.toString()); 	    fw.close(); 	}	catch(Exception e){	     throw new Exception("Could not write to output file. ");	}    }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -