⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 em.java

📁 用于multivariate时间序列分类
💻 JAVA
📖 第 1 页 / 共 3 页
字号:
                    System.out.println("Clust: " + j + " att: " + i + "\n");                    if (m_theInstances.attribute(i).isNominal()) {                        if (m_model[j][i] != null) {                            System.out.println(m_model[j][i].toString());                        }                    }                    else {                        System.out.println("Normal Distribution. Mean = "                                            + Utils.doubleToString(m_modelNormal[j][i][0]                                                                  , 8, 4)                                            + " StandardDev = "                                            + Utils.doubleToString(m_modelNormal[j][i][1]                                                                  , 8, 4)                                            + " WeightSum = "                                            + Utils.doubleToString(m_modelNormal[j][i][2]                                                                  , 8, 4));                    }                }            }                for (l = 0; l < inst.numInstances(); l++) {                m = Utils.maxIndex(m_weights[l]);                System.out.print("Inst " + Utils.doubleToString((double)l, 5, 0)                                  + " Class " + m + "\t");                for (j = 0; j < m_num_clusters; j++) {                    System.out.print(Utils.doubleToString(m_weights[l][j], 7, 5) + "  ");                }                System.out.println();            }        }        /**         * estimate the number of clusters by cross validation on the training         * data.         *         * @return the number of clusters selected         */        private int CVClusters ()            throws Exception            {                double CVLogLikely = -Double.MAX_VALUE;                double templl, tll;                boolean CVdecreased = true;                int num_cl = 1;                int i;                Random cvr;                Instances trainCopy;                while (CVdecreased) {                    CVdecreased = false;                    cvr = new Random(m_rseed);                    trainCopy = new Instances(m_theInstances);                    trainCopy.randomize(cvr);                    // theInstances.stratify(10);                    templl = 0.0;                    for (i = 0; i < num_cvs; i++) {                        Instances cvTrain = trainCopy.trainCV(num_cvs, i);                        Instances cvTest = trainCopy.testCV(num_cvs, i);                        EM_Init(cvTrain, num_cl);                        iterate(cvTrain, num_cl, false);                        tll = E(cvTest, num_cl);                        if (m_verbose) {                            System.out.println("# clust: " + num_cl + " Fold: " + i                                                + " Loglikely: " + tll);                        }                        templl += tll;                    }                    templl /= num_cvs;                     if (m_verbose) {                        System.out.println("==================================="                                            + "==============\n# clust: "                                            + num_cl                                            + " Mean Loglikely: "                                            + templl                                            + "\n================================"                                            + "=================");                    }                    if (templl > CVLogLikely) {                        CVLogLikely = templl;                        CVdecreased = true;                        num_cl++;                    }                }                if (m_verbose) {                    System.out.println("Number of clusters: " + (num_cl - 1));                }                return  num_cl - 1;            }        /**         * Returns the number of clusters.         *         * @return the number of clusters generated for a training dataset.         * @exception Exception if number of clusters could not be returned         * successfully         */        public int numberOfClusters ()            throws Exception            {                if (m_num_clusters == -1) {                    throw  new Exception("Haven't generated any clusters!");                }                return  m_num_clusters;            }        /**         * Classifies a given instance.         *         * @param instance the instance to be assigned to a cluster         * @return the number of the assigned cluster as an interger         * if the class is enumerated, otherwise the predicted value         * @exception Exception if instance could not be classified         * successfully         */        public void buildClusterer (Instances data)            throws Exception            {                if (data.checkForStringAttributes()) {                    throw  new Exception("Can't handle string attributes!");                }                m_theInstances = data;                doEM();            }        /**         * Predicts the cluster memberships for a given instance.         *         * @param data set of test instances         * @param instance the instance to be assigned a cluster.         * @return an array containing the estimated membership          * probabilities of the test instance in each cluster (this          * should sum to at most 1)         * @exception Exception if distribution could not be          * computed successfully         */        public double[] distributionForInstance (Instance inst)            throws Exception            {                int i, j;                double prob;                double[] wghts = new double[m_num_clusters];                for (i = 0; i < m_num_clusters; i++) {                    prob = 1.0;                    for (j = 0; j < m_num_attribs; j++) {                        if (!inst.isMissing(j)) {                            if (inst.attribute(j).isNominal()) {                                prob *= m_model[i][j].getProbability(inst.value(j));                            }                            else { // numeric attribute                                prob *= normalDens(inst.value(j),                                                    m_modelNormal[i][j][0],                                                    m_modelNormal[i][j][1]);                            }                        }                    }                    wghts[i] = (prob*m_priors[i]);                }                return  wghts;            }        public double probInstanceInCluster (Instance inst, int cluster) throws Exception{            double prob = 1;            // System.out.println("Instance " + inst.toString());             for (int j = 0; j < m_num_attribs; j++) {                if (!inst.isMissing(j)) {                    if (inst.attribute(j).isNominal()) {                        prob *= m_model[cluster][j].getProbability(inst.value(j));                    }                    else { // numeric attribute                        prob *= normalIns(inst.value(j),                                            m_modelNormal[cluster][j][0],                                            m_modelNormal[cluster][j][1]);                        // System.out.println("Prob is: " + prob);                     }                }            }            prob *= m_priors[cluster];             return prob;        }                /**         * Perform the EM algorithm         */        private void doEM ()            throws Exception            {                if (m_verbose) {                    System.out.println("Seed: " + m_rseed);                }                m_rr = new Random(m_rseed);                m_num_instances = m_theInstances.numInstances();                m_num_attribs = m_theInstances.numAttributes();                if (m_verbose) {                    System.out.println("Number of instances: "                                        + m_num_instances                                        + "\nNumber of atts: "                                        + m_num_attribs                                        + "\n");                }                // setDefaultStdDevs(theInstances);                // cross validate to determine number of clusters?                if (m_initialNumClusters == -1) {                    m_num_clusters = CVClusters();                }                // fit full training set                EM_Init(m_theInstances, m_num_clusters);                m_loglikely = iterate(m_theInstances, m_num_clusters, m_verbose);            }        /**         * iterates the M and E steps until the log likelihood of the data         * converges.         *         * @param inst the training instances.         * @param num_cl the number of clusters.         * @param report be verbose.         * @return the log likelihood of the data         */        private double iterate (Instances inst, int num_cl, boolean report)            throws Exception            {                int i;                double llkold = 0.0;                double llk = 0.0;                if (report) {                    EM_Report(inst);                }                for (i = 0; i < m_max_iterations; i++) {                    M(inst, num_cl);                    llkold = llk;                    llk = E(inst, num_cl);                    if (report) {                        System.out.println("Loglikely: " + llk);                    }                    if (i > 0) {                        if ((llk - llkold) < 1e-6) {                            break;                        }                    }                }                if (report) {                    EM_Report(inst);                }                return  llk;            }        public double densityForInstance(Instance inst) throws Exception {	return Utils.sum(weightsForInstance(inst));    }      protected double[] weightsForInstance(Instance inst)    throws Exception {    int i, j;    double prob;    double[] wghts = new double[m_num_clusters];    for (i = 0; i < m_num_clusters; i++) {      prob = 1.0;      for (j = 0; j < m_num_attribs; j++) {	if (!inst.isMissing(j)) {	  if (inst.attribute(j).isNominal()) {	    prob *= m_model[i][j].getProbability(inst.value(j));	  }	  else { // numeric attribute	    prob *= normalDens(inst.value(j), 			       m_modelNormal[i][j][0], 			       m_modelNormal[i][j][1]);	  }	}      }      wghts[i] = (prob*m_priors[i]);    }    return  wghts;  }            // ============        // Test method.        // ============        /**         * Main method for testing this class.         *         * @param argv should contain the following arguments: <p>         * -t training file [-T test file] [-N number of clusters] [-S random seed]         */                public static void main (String[] argv) {            try {                System.out.println(ClusterEvaluation.                                   evaluateClusterer(new EM(), argv));            }            catch (Exception e) {                System.out.println(e.getMessage());            }        }    }    

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -