⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 expnb_single.java

📁 用于multivariate时间序列分类
💻 JAVA
字号:
/** *  Single classifier solution.  *  *  Superseded by ExpSingle *  * @author Waleed Kadous * @version $Id: ExpNB_Single.java,v 1.1.1.1 2002/06/28 07:36:16 waleed Exp $ */package tclass;   import tclass.util.*; // import tclass.learnalg.*; import tclass.learnalg.*; import weka.attributeSelection.*; import weka.filters.*; import weka.core.*; import java.io.*; public class ExpNB_Single {    // Ok. What we are going to do is to separate the learning task in     // an interesting way.     // First of all, though, the standard stuff        String domDescFile = "sl.tdd";     String trainDataFile = "sl.tsl";     String testDataFile = "sl.ttl";     // String globalDesc = "test._gc";     // String evExtractDesc = "test._ee";    String evClusterDesc = "test._ec";     String settingsFile = "test.tal";     boolean featureSel = false;     int numDivs = 10;         void parseArgs(String[] args){        for(int i=0; i < args.length; i++){            if(args[i].equals("-tr")){                trainDataFile = args[++i];             }            if(args[i].equals("-te")){                testDataFile = args[++i];            }            if(args[i].equals("-settings")){                settingsFile = args[++i];             }            if(args[i].equals("-fs")){                featureSel = true;             }            if(args[i].equals("-numdivs")){                numDivs = Integer.parseInt(args[++i]);             }        }    }    public static void main(String[] args) throws Exception {        Debug.setDebugLevel(Debug.PROGRESS);         ExpSingle thisExp = new ExpSingle();         thisExp.parseArgs(args);         DomDesc domDesc = new DomDesc(thisExp.domDescFile);         ClassStreamVecI trainStreamData = new            ClassStreamVec(thisExp.trainDataFile, domDesc);         ClassStreamVecI testStreamData = new            ClassStreamVec(thisExp.testDataFile, domDesc);         Debug.dp(Debug.PROGRESS, "PROGRESS: Data read in");          Settings settings = new Settings(thisExp.settingsFile, domDesc);                 EventExtractor evExtractor = settings.getEventExtractor();         // Global data is likely to be included in every model; so we        // might as well calculated now        GlobalCalc globalCalc = settings.getGlobalCalc();         ClassStreamAttValVecI trainGlobalData =            globalCalc.applyGlobals(trainStreamData);        ClassStreamAttValVecI testGlobalData =            globalCalc.applyGlobals(testStreamData);        // And we might as well extract the events.         Debug.dp(Debug.PROGRESS, "PROGRESS: Globals calculated.");          Debug.dp(Debug.PROGRESS, "Train: " + trainGlobalData.size() +                 " Test: " + testGlobalData.size());          ClassStreamEventsVecI trainEventData =            evExtractor.extractEvents(trainStreamData);         ClassStreamEventsVecI testEventData =            evExtractor.extractEvents(testStreamData);         Debug.dp(Debug.PROGRESS, "PROGRESS: Events extracted");          // System.out.println(trainEventData.toString());         // Now we want the clustering algorithms only to cluster        // instances of each class. Make an array of clusterers,         // one per class.         int numTestStreams = testEventData.size();         int numClasses = domDesc.getClassDescVec().size();         EventDescVecI eventDescVec = evExtractor.getDescription();         EventClusterer eventClusterer = settings.getEventClusterer();         Debug.dp(Debug.PROGRESS, "PROGRESS: Data rearranged.");          //And now load it up.         StreamEventsVecI trainEventSEV =            trainEventData.getStreamEventsVec();         ClassificationVecI trainEventCV = trainEventData.getClassVec();        int numTrainStreams = trainEventCV.size();         ClusterVecI clusters = eventClusterer.clusterEvents(trainEventData);         Debug.dp(Debug.PROGRESS, "PROGRESS: Clustering complete");         Debug.dp(Debug.PROGRESS, "Clusters are:");         Debug.dp(Debug.PROGRESS, eventClusterer.getMapping());         Debug.dp(Debug.PROGRESS, "PROGRESS: Clustering complete. ");          // But wait! There's more! There is always more.         // The first thing was only useful for clustering.         // Now attribution. We want to attribute all the data. So we are going         // to have one dataset for each learner.         // First set up the attributors.         Attributor attribs = new Attributor(domDesc, clusters,                                             eventClusterer.getDescription());         Debug.dp(Debug.PROGRESS, "PROGRESS: AttributorMkr complete.");                 ClassStreamAttValVecI trainEventAtts =attribs.attribute(trainStreamData, trainEventData);         ClassStreamAttValVecI testEventAtts = attribs.attribute(testStreamData,                                                    testEventData);         Debug.dp(Debug.PROGRESS, "PROGRESS: Attribution complete.");         // Combine all data sources. For now, globals go in every        // one.         Combiner c = new Combiner();         ClassStreamAttValVecI trainAtts = c.combine(trainGlobalData,                                            trainEventAtts);         ClassStreamAttValVecI testAtts = c.combine(testGlobalData,                                           testEventAtts);         trainStreamData = null;         testStreamData = null;         eventClusterer = null;         trainEventSEV = null;         trainEventCV = null;         clusters = null;         attribs = null;         System.gc();         // So now we have the raw data in the correct form for each        // attributor.         // And now, we can construct a learner for each case.         // Well, for now, I'm going to do something completely crazy.         // Let's run each classifier nonetheless over the whole data        // ... and see what the hell happens. Maybe some voting scheme         // is possible!! This is a strange form of ensemble        // classifier.         // Each naive bayes algorithm only gets one         Debug.dp(Debug.PROGRESS, "PROGRESS: Beginning format conversion for class ");         Instances  data = WekaBridge.makeInstances(trainAtts, "Train ");        Debug.dp(Debug.PROGRESS, "PROGRESS: Conversion complete. Starting learning");            Debug.setDebugLevel(Debug.PROGRESS);         int[] selectedIndices = null;          if(thisExp.featureSel){            Debug.dp(Debug.PROGRESS, "PROGRESS: Doing feature selection");                BestFirst bfs = new BestFirst();            CfsSubsetEval cfs = new CfsSubsetEval();             cfs.buildEvaluator(data);             selectedIndices = bfs.search(cfs, data);             // Now extract the features.             System.err.print("Selected features: ");            String featureString = new String();             for(int j=0; j < selectedIndices.length; j++){                featureString += selectedIndices[j] + ",";            }            featureString += ("last");             System.err.println(featureString);             // Now cut from trainAtts.             // trainAtts.selectFeatures(selectedIndices);         }                        Debug.dp(Debug.PROGRESS, "Learning with Naive Bayes now ...");         NaiveBayes nbLearner = new NaiveBayes();         nbLearner.setDomDesc(domDesc);          nbLearner.setAttDescVec(trainAtts.getStreamAttValVec().getDescription());         ClassifierI nbClassifier = nbLearner.learn(trainAtts);         Debug.dp(Debug.PROGRESS, "PROGRESS: Learning complete. ");          System.out.println(">>> Testing stage <<<");         // First, print the results of using the straight testers.         ClassificationVecI classns;         classns = (ClassificationVecI) testAtts.getClassVec().clone();        StreamAttValVecI savvi = testAtts.getStreamAttValVec();         /*        if(thisExp.featureSel){            String featureString = new String();             for(int j=0; j < selectedIndices.length; j++){                featureString += (selectedIndices[j]+1) + ",";            }            featureString += "last";             // Now apply the filter.             AttributeFilter af = new AttributeFilter();             af.setInvertSelection(true);             af.setAttributeIndices(featureString);             af.inputFormat(data);             data = af.useFilter(data, af);         }        */        for(int j=0; j < numTestStreams; j++){            nbClassifier.classify(savvi.elAt(j), classns.elAt(j));        }        System.out.println(">>> Learner <<<");         int numCorrect = 0;         for(int j=0; j < numTestStreams; j++){            System.out.print(classns.elAt(j).toString());             if(classns.elAt(j).getRealClass() == classns.elAt(j).getPredictedClass()){                numCorrect++;                 String realClassName = domDesc.getClassDescVec().getClassLabel(classns.elAt(j).getRealClass());                                System.out.println("Class " + realClassName + " CORRECTLY classified.");             }            else {                String realClassName = domDesc.getClassDescVec().getClassLabel(classns.elAt(j).getRealClass());                String predictedClassName = domDesc.getClassDescVec().getClassLabel(classns.elAt(j).getPredictedClass());                                                System.out.println("Class " + realClassName + " INCORRECTLY classified as " + predictedClassName + ".");             }        }            System.out.println("Test accuracy for classifier: " + numCorrect + " of " + numTestStreams + " (" +                                numCorrect*100.0/numTestStreams + "%)");                 }    }

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -