📄 seqcvparameterselection.java
字号:
/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* * SeqCVParameterSelection.java * Copyright (C) 1999 Len Trigg * */package weka.classifiers.meta;import weka.classifiers.Evaluation;import weka.classifiers.SequentialEvaluation;import weka.classifiers.Classifier;import weka.classifiers.SequentialClassifier;import weka.classifiers.rules.ZeroR;import java.io.*;import java.util.*;import weka.core.*;/** * Class for performing parameter selection by cross-validation for a * sequential classifier. For more information, see<p> * * R. Kohavi (1995). <i>Wrappers for Performance * Enhancement and Oblivious Decision Graphs</i>. PhD * Thesis. Department of Computer Science, Stanford University. <p> * * Valid options are:<p> * * -D <br> * Turn on debugging output.<p> * * -W classname <br> * Specify the full class name of classifier to perform cross-validation * selection on.<p> * * -X num <br> * Number of folds used for cross validation (default 10). <p> * * -S seed <br> * Random number seed (default 1).<p> * * -P "N 1 5 10" <br> * Sets an optimisation parameter for the classifier with name -N, * lower bound 1, upper bound 5, and 10 optimisation steps. * The upper bound may be the character 'A' or 'I' to substitute * the number of attributes or instances in the training data, * respectively. * This parameter may be supplied more than once to optimise over * several classifier options simultaneously. <p> * * Options after -- are passed to the designated sub-classifier. <p> * * @author Len Trigg (trigg@cs.waikato.ac.nz) * @author Saket Joshi (joshi@cs.orst.edu) * @version $Revision: 1.1 $ */public class SeqCVParameterSelection extends SequentialClassifier implements OptionHandler, Summarizable { /* * A data structure to hold values associated with a single * cross-validation search parameter */ protected class CVParameter { /** Char used to identify the option of interest */ private char m_ParamChar; /** Lower bound for the CV search */ private double m_Lower; /** Upper bound for the CV search */ private double m_Upper; /** Increment during the search */ private double m_Steps; /** The parameter value with the best performance */ private double m_ParamValue; /** True if the parameter should be added at the end of the argument list */ private boolean m_AddAtEnd; /** True if the parameter should be rounded to an integer */ private boolean m_RoundParam; /** * Constructs a CVParameter. */ public CVParameter(String param) throws Exception { // Tokenize the string into it's parts StreamTokenizer st = new StreamTokenizer(new StringReader(param)); if (st.nextToken() != StreamTokenizer.TT_WORD) { throw new Exception("CVParameter " + param + ": Character parameter identifier expected"); } m_ParamChar = st.sval.charAt(0); if (st.nextToken() != StreamTokenizer.TT_NUMBER) { throw new Exception("CVParameter " + param + ": Numeric lower bound expected"); } m_Lower = st.nval; if (st.nextToken() == StreamTokenizer.TT_NUMBER) { m_Upper = st.nval; if (m_Upper < m_Lower) { throw new Exception("CVParameter " + param + ": Upper bound is less than lower bound"); } } else if (st.ttype == StreamTokenizer.TT_WORD) { if (st.sval.toUpperCase().charAt(0) == 'A') { m_Upper = m_Lower - 1; } else if (st.sval.toUpperCase().charAt(0) == 'I') { m_Upper = m_Lower - 2; } else { throw new Exception("CVParameter " + param + ": Upper bound must be numeric, or 'A' or 'N'"); } } else { throw new Exception("CVParameter " + param + ": Upper bound must be numeric, or 'A' or 'N'"); } if (st.nextToken() != StreamTokenizer.TT_NUMBER) { throw new Exception("CVParameter " + param + ": Numeric number of steps expected"); } m_Steps = st.nval; if (st.nextToken() == StreamTokenizer.TT_WORD) { if (st.sval.toUpperCase().charAt(0) == 'R') { m_RoundParam = true; } } } /** * Returns a CVParameter as a string. */ public String toString() { String result = m_ParamChar + " " + m_Lower + " "; switch ((int)(m_Lower - m_Upper + 0.5)) { case 1: result += "A"; break; case 2: result += "I"; break; default: result += m_Upper; break; } result += " " + m_Steps; if (m_RoundParam) { result += " R"; } return result; } } /** The generated base classifier */ protected SequentialClassifier m_Classifier = new weka.classifiers.meta.RSW(); /** * The base classifier options (not including those being set * by cross-validation) */ protected String [] m_ClassifierOptions; /** The set of all classifier options as determined by cross-validation */ protected String [] m_BestClassifierOptions; /** The cross-validated performance of the best options */ protected double m_BestPerformance; /** The set of parameters to cross-validate over */ protected FastVector m_CVParams; /** The number of attributes in the data */ protected int m_NumAttributes; /** The number of instances in a training fold */ protected int m_TrainFoldSize; /** The number of folds used in cross-validation */ protected int m_NumFolds = 10; /** Random number seed */ protected int m_Seed = 1; /** Debugging mode, gives extra output if true */ protected boolean m_Debug; /** * Create the options array to pass to the classifier. The parameter * values and positions are taken from m_ClassifierOptions and * m_CVParams. * * @return the options array */ protected String [] createOptions() { String [] options = new String [m_ClassifierOptions.length + 2 * m_CVParams.size()]; int start = 0, end = options.length; // Add the cross-validation parameters and their values for (int i = 0; i < m_CVParams.size(); i++) { CVParameter cvParam = (CVParameter)m_CVParams.elementAt(i); double paramValue = cvParam.m_ParamValue; if (cvParam.m_RoundParam) { paramValue = (double)((int) (paramValue + 0.5)); } if (cvParam.m_AddAtEnd) { options[--end] = "" + Utils.doubleToString(paramValue,4); options[--end] = "-" + cvParam.m_ParamChar; } else { options[start++] = "-" + cvParam.m_ParamChar; options[start++] = "" + Utils.doubleToString(paramValue,4); } } // Add the static parameters System.arraycopy(m_ClassifierOptions, 0, options, start, m_ClassifierOptions.length); return options; } /** * Finds the best parameter combination. (recursive for each parameter * being optimised). * * @param depth the index of the parameter to be optimised at this level * @exception Exception if an error occurs */ protected void findParamsByCrossValidation(int depth, Instances trainData) throws Exception { if (depth < m_CVParams.size()) { CVParameter cvParam = (CVParameter)m_CVParams.elementAt(depth); double upper; switch ((int)(cvParam.m_Lower - cvParam.m_Upper + 0.5)) { case 1: upper = m_NumAttributes; break; case 2: upper = m_TrainFoldSize; break; default: upper = cvParam.m_Upper; break; } double increment = (upper - cvParam.m_Lower) / (cvParam.m_Steps - 1); for(cvParam.m_ParamValue = cvParam.m_Lower; cvParam.m_ParamValue <= upper; cvParam.m_ParamValue += increment) { findParamsByCrossValidation(depth + 1, trainData); } } else { // Set the classifier options String [] options = createOptions(); if (m_Debug) { System.err.print("Setting options for " + m_Classifier.getClass().getName() + ":"); for (int i = 0; i < options.length; i++) { System.err.print(" " + options[i]); } System.err.println(""); } ((OptionHandler)m_Classifier).setOptions(options); double error; if(m_Classifier instanceof SequentialClassifier) { SequentialEvaluation evaluation = new SequentialEvaluation(trainData); for (int j = 0; j < m_NumFolds; j++) { Instances train = trainData.seqTrainCV(m_NumFolds, j); Instances test = trainData.seqTestCV(m_NumFolds, j); m_Classifier.buildClassifier(train); evaluation.setPriors(train); evaluation.evaluateModel((SequentialClassifier)m_Classifier, test); } error = evaluation.errorRate(); } else { Evaluation evaluation = new Evaluation(trainData); for (int j = 0; j < m_NumFolds; j++) { Instances train = trainData.trainCV(m_NumFolds, j); Instances test = trainData.testCV(m_NumFolds, j); m_Classifier.buildClassifier(train); evaluation.setPriors(train); evaluation.evaluateModel(m_Classifier, test); } error = evaluation.errorRate(); } if (m_Debug) { System.err.println("Cross-validated error rate: " + Utils.doubleToString(error, 6, 4)); } if ((m_BestPerformance == -99) || (error < m_BestPerformance)) { m_BestPerformance = error; m_BestClassifierOptions = createOptions(); } } } /** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ public Enumeration listOptions() { Vector newVector = new Vector(5); newVector.addElement(new Option( "\tTurn on debugging output.", "D", 0, "-D")); newVector.addElement(new Option( "\tFull name of classifier to perform parameter selection on.\n" + "\teg: weka.classifiers.bayes.NaiveBayes", "W", 1, "-W <classifier class name>")); newVector.addElement(new Option( "\tNumber of folds used for cross validation (default 10).", "X", 1, "-X <number of folds>")); newVector.addElement(new Option( "\tClassifier parameter options.\n" + "\teg: \"N 1 5 10\" Sets an optimisation parameter for the\n" + "\tclassifier with name -N, with lower bound 1, upper bound\n" + "\t5, and 10 optimisation steps. The upper bound may be the\n" + "\tcharacter 'A' or 'I' to substitute the number of\n" + "\tattributes or instances in the training data,\n" + "\trespectively. This parameter may be supplied more than\n" + "\tonce to optimise over several classifier options\n" + "\tsimultaneously.", "P", 1, "-P <classifier parameter>")); newVector.addElement(new Option( "\tSets the random number seed (default 1).", "S", 1, "-S <random number seed>")); if ((m_Classifier != null) && (m_Classifier instanceof OptionHandler)) { newVector.addElement(new Option("", "", 0, "\nOptions specific to sub-classifier " + m_Classifier.getClass().getName() + ":\n(use -- to signal start of sub-classifier options)")); Enumeration enum = ((OptionHandler)m_Classifier).listOptions(); while (enum.hasMoreElements()) { newVector.addElement(enum.nextElement());
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -