⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 seqcvparameterselection.java

📁 把 sequential 有导师学习问题转化为传统的有导师学习问题
💻 JAVA
📖 第 1 页 / 共 2 页
字号:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* *    SeqCVParameterSelection.java *    Copyright (C) 1999 Len Trigg * */package weka.classifiers.meta;import weka.classifiers.Evaluation;import weka.classifiers.SequentialEvaluation;import weka.classifiers.Classifier;import weka.classifiers.SequentialClassifier;import weka.classifiers.rules.ZeroR;import java.io.*;import java.util.*;import weka.core.*;/** * Class for performing parameter selection by cross-validation for a * sequential classifier. For more information, see<p> * * R. Kohavi (1995). <i>Wrappers for Performance * Enhancement and Oblivious Decision Graphs</i>. PhD * Thesis. Department of Computer Science, Stanford University. <p> * * Valid options are:<p> * * -D <br> * Turn on debugging output.<p> * * -W classname <br> * Specify the full class name of classifier to perform cross-validation * selection on.<p> * * -X num <br> * Number of folds used for cross validation (default 10). <p> * * -S seed <br> * Random number seed (default 1).<p> * * -P "N 1 5 10" <br> * Sets an optimisation parameter for the classifier with name -N, * lower bound 1, upper bound 5, and 10 optimisation steps. * The upper bound may be the character 'A' or 'I' to substitute  * the number of attributes or instances in the training data, * respectively. * This parameter may be supplied more than once to optimise over * several classifier options simultaneously. <p> * * Options after -- are passed to the designated sub-classifier. <p> * * @author Len Trigg (trigg@cs.waikato.ac.nz) * @author Saket Joshi (joshi@cs.orst.edu) * @version $Revision: 1.1 $  */public class SeqCVParameterSelection extends SequentialClassifier   implements OptionHandler, Summarizable {  /*   * A data structure to hold values associated with a single   * cross-validation search parameter   */  protected class CVParameter {    /**  Char used to identify the option of interest */    private char m_ParamChar;        /**  Lower bound for the CV search */    private double m_Lower;          /**  Upper bound for the CV search */    private double m_Upper;          /**  Increment during the search */    private double m_Steps;          /**  The parameter value with the best performance */    private double m_ParamValue;     /**  True if the parameter should be added at the end of the argument list */    private boolean m_AddAtEnd;      /**  True if the parameter should be rounded to an integer */    private boolean m_RoundParam;    /**     * Constructs a CVParameter.     */    public CVParameter(String param) throws Exception {      // Tokenize the string into it's parts      StreamTokenizer st = new StreamTokenizer(new StringReader(param));      if (st.nextToken() != StreamTokenizer.TT_WORD) {	throw new Exception("CVParameter " + param 			    + ": Character parameter identifier expected");      }      m_ParamChar = st.sval.charAt(0);           if (st.nextToken() != StreamTokenizer.TT_NUMBER) {	throw new Exception("CVParameter " + param 			    + ": Numeric lower bound expected");      }      m_Lower = st.nval;      if (st.nextToken() == StreamTokenizer.TT_NUMBER) {	m_Upper = st.nval;	if (m_Upper < m_Lower) {	  throw new Exception("CVParameter " + param			      + ": Upper bound is less than lower bound");	}      } else if (st.ttype == StreamTokenizer.TT_WORD) {	if (st.sval.toUpperCase().charAt(0) == 'A') {	  m_Upper = m_Lower - 1;	} else if (st.sval.toUpperCase().charAt(0) == 'I') {	  m_Upper = m_Lower - 2;	} else {	  throw new Exception("CVParameter " + param 	      + ": Upper bound must be numeric, or 'A' or 'N'");	}      } else {	throw new Exception("CVParameter " + param 	      + ": Upper bound must be numeric, or 'A' or 'N'");      }      if (st.nextToken() != StreamTokenizer.TT_NUMBER) {	throw new Exception("CVParameter " + param 			    + ": Numeric number of steps expected");      }      m_Steps = st.nval;      if (st.nextToken() == StreamTokenizer.TT_WORD) {	if (st.sval.toUpperCase().charAt(0) == 'R') {	  m_RoundParam = true;	}      }    }    /**     * Returns a CVParameter as a string.     */    public String toString() {      String result = m_ParamChar + " " + m_Lower + " ";      switch ((int)(m_Lower - m_Upper + 0.5)) {      case 1:	result += "A";	break;      case 2:	result += "I";	break;      default:	result += m_Upper;	break;      }      result += " " + m_Steps;      if (m_RoundParam) {	result += " R";      }      return result;    }  }  /** The generated base classifier */  protected SequentialClassifier m_Classifier = new weka.classifiers.meta.RSW();  /**   * The base classifier options (not including those being set   * by cross-validation)   */  protected String [] m_ClassifierOptions;  /** The set of all classifier options as determined by cross-validation */  protected String [] m_BestClassifierOptions;  /** The cross-validated performance of the best options */  protected double m_BestPerformance;  /** The set of parameters to cross-validate over */  protected FastVector m_CVParams;  /** The number of attributes in the data */  protected int m_NumAttributes;  /** The number of instances in a training fold */  protected int m_TrainFoldSize;    /** The number of folds used in cross-validation */  protected int m_NumFolds = 10;  /** Random number seed */  protected int m_Seed = 1;  /** Debugging mode, gives extra output if true */  protected boolean m_Debug;  /**   * Create the options array to pass to the classifier. The parameter   * values and positions are taken from m_ClassifierOptions and   * m_CVParams.   *   * @return the options array   */  protected String [] createOptions() {        String [] options = new String [m_ClassifierOptions.length 				   + 2 * m_CVParams.size()];    int start = 0, end = options.length;    // Add the cross-validation parameters and their values    for (int i = 0; i < m_CVParams.size(); i++) {      CVParameter cvParam = (CVParameter)m_CVParams.elementAt(i);      double paramValue = cvParam.m_ParamValue;      if (cvParam.m_RoundParam) {	paramValue = (double)((int) (paramValue + 0.5));      }      if (cvParam.m_AddAtEnd) {	options[--end] = "" + 	Utils.doubleToString(paramValue,4);	options[--end] = "-" + cvParam.m_ParamChar;      } else {	options[start++] = "-" + cvParam.m_ParamChar;	options[start++] = "" 	+ Utils.doubleToString(paramValue,4);      }    }    // Add the static parameters    System.arraycopy(m_ClassifierOptions, 0,		     options, start,		     m_ClassifierOptions.length);    return options;  }  /**   * Finds the best parameter combination. (recursive for each parameter   * being optimised).   *   * @param depth the index of the parameter to be optimised at this level   * @exception Exception if an error occurs   */  protected void findParamsByCrossValidation(int depth, Instances trainData)    throws Exception {    if (depth < m_CVParams.size()) {      CVParameter cvParam = (CVParameter)m_CVParams.elementAt(depth);      double upper;      switch ((int)(cvParam.m_Lower - cvParam.m_Upper + 0.5)) {      case 1:	upper = m_NumAttributes;	break;      case 2:	upper = m_TrainFoldSize;	break;      default:	upper = cvParam.m_Upper;	break;      }      double increment = (upper - cvParam.m_Lower) / (cvParam.m_Steps - 1);      for(cvParam.m_ParamValue = cvParam.m_Lower; 	  cvParam.m_ParamValue <= upper; 	  cvParam.m_ParamValue += increment) {	findParamsByCrossValidation(depth + 1, trainData);      }    } else {            // Set the classifier options      String [] options = createOptions();      if (m_Debug) {	System.err.print("Setting options for " 			 + m_Classifier.getClass().getName() + ":");	for (int i = 0; i < options.length; i++) {	  System.err.print(" " + options[i]);	}	System.err.println("");      }      ((OptionHandler)m_Classifier).setOptions(options);      double error;	      if(m_Classifier instanceof SequentialClassifier)	{      	SequentialEvaluation evaluation = new SequentialEvaluation(trainData);		for (int j = 0; j < m_NumFolds; j++) {	  Instances train = trainData.seqTrainCV(m_NumFolds, j);	  Instances test = trainData.seqTestCV(m_NumFolds, j);	  m_Classifier.buildClassifier(train);	  evaluation.setPriors(train);	  evaluation.evaluateModel((SequentialClassifier)m_Classifier, test);        }        error = evaluation.errorRate();            } else {        Evaluation evaluation = new Evaluation(trainData);        for (int j = 0; j < m_NumFolds; j++) {	  Instances train = trainData.trainCV(m_NumFolds, j);	  Instances test = trainData.testCV(m_NumFolds, j);	  m_Classifier.buildClassifier(train);	  evaluation.setPriors(train);	  evaluation.evaluateModel(m_Classifier, test);        }        error = evaluation.errorRate();      }	    	      if (m_Debug) {	System.err.println("Cross-validated error rate: " 			   + Utils.doubleToString(error, 6, 4));      }      if ((m_BestPerformance == -99) || (error < m_BestPerformance)) {		m_BestPerformance = error;	m_BestClassifierOptions = createOptions();      }    }  }  /**   * Returns an enumeration describing the available options.   *   * @return an enumeration of all the available options.   */  public Enumeration listOptions() {    Vector newVector = new Vector(5);    newVector.addElement(new Option(	      "\tTurn on debugging output.",	      "D", 0, "-D"));    newVector.addElement(new Option(	      "\tFull name of classifier to perform parameter selection on.\n"	      + "\teg: weka.classifiers.bayes.NaiveBayes",	      "W", 1, "-W <classifier class name>"));    newVector.addElement(new Option(	      "\tNumber of folds used for cross validation (default 10).",	      "X", 1, "-X <number of folds>"));    newVector.addElement(new Option(	      "\tClassifier parameter options.\n"	      + "\teg: \"N 1 5 10\" Sets an optimisation parameter for the\n"	      + "\tclassifier with name -N, with lower bound 1, upper bound\n"	      + "\t5, and 10 optimisation steps. The upper bound may be the\n"	      + "\tcharacter 'A' or 'I' to substitute the number of\n"	      + "\tattributes or instances in the training data,\n"	      + "\trespectively. This parameter may be supplied more than\n"	      + "\tonce to optimise over several classifier options\n"	      + "\tsimultaneously.",	      "P", 1, "-P <classifier parameter>"));    newVector.addElement(new Option(	      "\tSets the random number seed (default 1).",	      "S", 1, "-S <random number seed>"));    if ((m_Classifier != null) &&	(m_Classifier instanceof OptionHandler)) {      newVector.addElement(new Option("",	        "", 0,		"\nOptions specific to sub-classifier "	        + m_Classifier.getClass().getName()		+ ":\n(use -- to signal start of sub-classifier options)"));      Enumeration enum = ((OptionHandler)m_Classifier).listOptions();      while (enum.hasMoreElements()) {	newVector.addElement(enum.nextElement());

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -