⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 rsw.java

📁 把 sequential 有导师学习问题转化为传统的有导师学习问题
💻 JAVA
📖 第 1 页 / 共 2 页
字号:
    if (m_Classifier != null) {      try {	vec.addElement(new Option("",				  "", 0, "\nOptions specific to classifier "				  + m_Classifier.getClass().getName() + ":"));	Enumeration enum = ((OptionHandler)m_Classifier).listOptions();	while (enum.hasMoreElements()) {	  vec.addElement(enum.nextElement());	}      } catch (Exception e) {      }    }    return vec.elements();  }  /**   * Parses a given list of options. Valid options are:<p>   *   *   * -W classifier <br>   * Sets the base classifier (required).<p>   *    * -A lic <br>   * Sets the left input context. <p>   *   * -B ric <br>   * Sets the right input context <p>   *   * -Y loc <br>   * Sets the left output context. <p>   *   * -Z roc <br>   * Sets the right output context. <p>   *   * @param options the list of options as an array of strings   * @exception Exception if an option is not supported   *   */  public void setOptions(String[] options) throws Exception {      String licString = Utils.getOption('A', options);    if (licString.length() != 0) {      setLic(Integer.parseInt(licString));    } else {      setLic(3);    }    String ricString = Utils.getOption('B', options);    if (ricString.length() != 0) {      setRic(Integer.parseInt(ricString));    } else {      setRic(3);    }    String locString = Utils.getOption('Y', options);    if (locString.length() != 0) {      setLoc(Integer.parseInt(locString));    } else {      setLoc(0);    }    String rocString = Utils.getOption('Z', options);    if (rocString.length() != 0) {      setRoc(Integer.parseInt(rocString));    } else {      setRoc(3);    }    if((loc*roc) != 0) {      throw new Exception("One of the output contexts has to be zero");    }	    if((lic < 0) || (ric < 0) || (loc < 0) || (roc < 0)) {      throw new Exception("Windowizing contexts cannot be negative");    }        String classifierName = Utils.getOption('W', options);    if (classifierName.length() == 0) {      throw new Exception("A classifier must be specified with"			  + " the -W option.");    }    setClassifier((Classifier)                              Classifier.forName(classifierName,                                                 Utils.partitionOptions(options)));  }  /**   * Gets the current settings of the Classifier.   *   * @return an array of strings suitable for passing to setOptions   *   */  public String [] getOptions() {    String [] classifierOptions = new String[0];    if ((m_Classifier != null) &&	(m_Classifier instanceof OptionHandler)) {      classifierOptions = ((OptionHandler)m_Classifier).getOptions();    }    String [] options = new String[classifierOptions.length + 20];    int current = 0;    options[current++] = "-A";    options[current++] = "" + lic;        options[current++] = "-B";    options[current++] = "" + ric;        options[current++] = "-Y";    options[current++] = "" + loc;    options[current++] = "-Z";    options[current++] = "" + roc;        if (getClassifier() != null) {      options[current++] = "-W";      options[current++] = getClassifier().getClass().getName();    }    options[current++] = "--";    System.arraycopy(classifierOptions, 0, options, current, 		     classifierOptions.length);    current += classifierOptions.length;    while (current < options.length) {      options[current++] = "";    }    return options;  }  /**   * returns the value of the distribution classifier.   */  public Classifier getClassifier() {    return (m_Classifier);  }  /**   * returns the value of the left input context.   */  public int getLic() {    return (lic);  }  /**   * returns the value of the right input context.   */  public int getRic() {    return (ric);  }  /**   * returns the value of the left output context.   */  public int getLoc() {    return (loc);  }  /**   * returns the value of the right output context.   */  public int getRoc() {    return (roc);  }  /**   * sets the value of the distribution classifier.   */  public void setClassifier(Classifier cf) {    m_Classifier = cf;  }  /**   * sets the value of the left input context.   */  public void setLic(int num) {    lic = num;  }  /**   * sets the value of the right input context.   */  public void setRic(int num) {    ric = num;  }  /**   * sets the value of the left output context.   */  public void setLoc(int num) {    loc = num;  }  /**   * sets the value of the right output context.   */  public void setRoc(int num) {    roc = num;  }  /**   * Classifies all instances   * @param instances the test instances   */  public double [][] distributionForSequence(Instances instances) throws  Exception {	    Filter window = new Windowise(lic, ric, loc, roc);    window.setInputFormat(instances);    Instances windowed = Filter.useFilter(instances, window);    windowed.sort(1);    windowed.deleteAttributeAt(0);    windowed.deleteAttributeAt(0);	    double [] line;    double temp;    int startWrite = 0, startRead, tempDisp = 0, lineLen = 0;    int winNumClasses = m_Data.numClasses();    double [][] result = new double [windowed.numInstances()][winNumClasses];    int classifiedSoFar = 0;	    if(loc != 0)  {      startWrite = classIndexStart-loc;      tempDisp = -1;      lineLen = loc - 1;    }    if (roc != 0){      startWrite = classIndexStart+2;      tempDisp = 1;      lineLen = roc-1;    }	    line = new double[lineLen];    startRead = classIndexStart - loc + 1;	    double [] classes = new double[windowed.numInstances()];    temp = winNumClasses - 1;    for(int i = 0; i<lineLen; i++)      {	line[i] = winNumClasses - 1;      }	    if(loc != 0)      {	for (int k = windowed.numInstances() - 1; k >= 0; k--)	  {	    Instance inst = (Instance)windowed.instance(k);	    inst.setValue(classIndexStart+tempDisp, temp);	    inst = overWrite(inst, line, startWrite);	    inst.setDataset(windowed);							    double [] probDist = ((Classifier)m_Classifier).distributionForInstance(inst);	    temp = Utils.maxIndex(probDist);	    line = overRead(inst, startRead, startRead+lineLen);	    result[windowed.numInstances()-k] = probDist;	  }      }    else      {	for (int k = 0; k < windowed.numInstances(); k++)	  {	    Instance inst = (Instance)windowed.instance(k);	    inst.setValue(classIndexStart+tempDisp, temp);	    inst = overWrite(inst, line, startWrite);	    inst.setDataset(m_Data/*windowed*/);				    double [] probDist = ((Classifier)m_Classifier).distributionForInstance(inst);				    temp = Utils.maxIndex(probDist);	    line = overRead(inst, startRead, startRead+lineLen);	    result[windowed.numInstances()-k-1] = probDist;	  }      }    return result;  }  /**   * Classifies a given sequence.   *   * @param instance the instances to be classified   * @return the predicted sequence, as an array of class labels   */    public double[] classifySequence(Instances insts) throws Exception {	    int count = insts.numInstances();    double [] pred = new double[count];    double [][] dist = distributionForSequence(insts);    for(int i = 0; i<count; i++) {      pred[i] = Utils.maxIndex(dist[i]);    }      return pred;}  /**   * The main function for testing this class   */  public static void main(String args[]) {    try {      System.out.println(SequentialEvaluation.			 evaluateModel(new RSW(), args));    } catch (Exception e) {      System.err.println(e.getMessage());    }  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -