⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 rijndael-alg-ref.c

📁 AES(The Advanced Encryption Standard)是美国国家标准与技术研究所用于加密电子数据的规范
💻 C
字号:
/* rijndael-alg-ref.c   v2.2   March 2002 * Reference ANSI C code * authors: Paulo Barreto *          Vincent Rijmen * * This code is placed in the public domain. */#include <stdio.h>#include <stdlib.h>#include "rijndael-alg-ref.h"#define SC	((BC - 4) >> 1)#include "boxes-ref.dat"static word8 shifts[3][4][2] = {   0, 0,   1, 3,   2, 2,   3, 1,      0, 0,   1, 5,   2, 4,   3, 3,      0, 0,   1, 7,   3, 5,   4, 4}; word8 mul(word8 a, word8 b) {   /* multiply two elements of GF(2^m)    * needed for MixColumn and InvMixColumn    */	if (a && b) return Alogtable[(Logtable[a] + Logtable[b])%255];	else return 0;}void AddRoundKey(word8 a[4][MAXBC], word8 rk[4][MAXBC], word8 BC) {	/* Exor corresponding text input and round key input bytes	 */	int i, j;		for(i = 0; i < 4; i++)   		for(j = 0; j < BC; j++) a[i][j] ^= rk[i][j];}void ShiftRows(word8 a[4][MAXBC], word8 d, word8 BC) {	/* Row 0 remains unchanged	 * The other three rows are shifted a variable amount	 */	word8 tmp[MAXBC];	int i, j;		for(i = 1; i < 4; i++) {		for(j = 0; j < BC; j++)                 	tmp[j] = a[i][(j + shifts[SC][i][d]) % BC];		for(j = 0; j < BC; j++) a[i][j] = tmp[j];	}}void Substitution(word8 a[4][MAXBC], word8 box[256], word8 BC) {	/* Replace every byte of the input by the byte at that place	 * in the nonlinear S-box.         * This routine implements SubBytes and InvSubBytes	 */	int i, j;		for(i = 0; i < 4; i++)		for(j = 0; j < BC; j++) a[i][j] = box[a[i][j]] ;}   void MixColumns(word8 a[4][MAXBC], word8 BC) {        /* Mix the four bytes of every column in a linear way	 */	word8 b[4][MAXBC];	int i, j;			for(j = 0; j < BC; j++)		for(i = 0; i < 4; i++)			b[i][j] = mul(2,a[i][j])				^ mul(3,a[(i + 1) % 4][j])				^ a[(i + 2) % 4][j]				^ a[(i + 3) % 4][j];	for(i = 0; i < 4; i++)		for(j = 0; j < BC; j++) a[i][j] = b[i][j];}void InvMixColumns(word8 a[4][MAXBC], word8 BC) {        /* Mix the four bytes of every column in a linear way	 * This is the opposite operation of Mixcolumns	 */	word8 b[4][MAXBC];	int i, j;		for(j = 0; j < BC; j++)	for(i = 0; i < 4; i++)             		b[i][j] = mul(0xe,a[i][j])			^ mul(0xb,a[(i + 1) % 4][j])                 			^ mul(0xd,a[(i + 2) % 4][j])			^ mul(0x9,a[(i + 3) % 4][j]);                        	for(i = 0; i < 4; i++)		for(j = 0; j < BC; j++) a[i][j] = b[i][j];}int rijndaelKeySched (word8 k[4][MAXKC], int keyBits, int blockBits, 		word8 W[MAXROUNDS+1][4][MAXBC]) {	/* Calculate the necessary round keys	 * The number of calculations depends on keyBits and blockBits	 */	int KC, BC, ROUNDS;	int i, j, t, rconpointer = 0;	word8 tk[4][MAXKC];   	switch (keyBits) {	case 128: KC = 4; break;	case 192: KC = 6; break;	case 256: KC = 8; break;	default : return (-1);	}	switch (blockBits) {	case 128: BC = 4; break;	case 192: BC = 6; break;	case 256: BC = 8; break;	default : return (-2);	}	switch (keyBits >= blockBits ? keyBits : blockBits) {	case 128: ROUNDS = 10; break;	case 192: ROUNDS = 12; break;	case 256: ROUNDS = 14; break;	default : return (-3); /* this cannot happen */	}		for(j = 0; j < KC; j++)		for(i = 0; i < 4; i++)			tk[i][j] = k[i][j];	t = 0;	/* copy values into round key array */	for(j = 0; (j < KC) && (t < (ROUNDS+1)*BC); j++, t++)		for(i = 0; i < 4; i++) W[t / BC][i][t % BC] = tk[i][j];			while (t < (ROUNDS+1)*BC) {         	/* while not enough round key material calculated */		/* calculate new values */		for(i = 0; i < 4; i++)			tk[i][0] ^= S[tk[(i+1)%4][KC-1]];		tk[0][0] ^= rcon[rconpointer++];		if (KC != 8)			for(j = 1; j < KC; j++)				for(i = 0; i < 4; i++) tk[i][j] ^= tk[i][j-1];		else {			for(j = 1; j < KC/2; j++)				for(i = 0; i < 4; i++) tk[i][j] ^= tk[i][j-1];			for(i = 0; i < 4; i++)                         	tk[i][KC/2] ^= S[tk[i][KC/2 - 1]];			for(j = KC/2 + 1; j < KC; j++)				for(i = 0; i < 4; i++) tk[i][j] ^= tk[i][j-1];	}	/* copy values into round key array */	for(j = 0; (j < KC) && (t < (ROUNDS+1)*BC); j++, t++)		for(i = 0; i < 4; i++) W[t / BC][i][t % BC] = tk[i][j];	}			return 0;}      int rijndaelEncrypt (word8 a[4][MAXBC], int keyBits, int blockBits, 		word8 rk[MAXROUNDS+1][4][MAXBC]){	/* Encryption of one block. 	 */	int r, BC, ROUNDS;	switch (blockBits) {	case 128: BC = 4; break;	case 192: BC = 6; break;	case 256: BC = 8; break;	default : return (-2);	}	switch (keyBits >= blockBits ? keyBits : blockBits) {	case 128: ROUNDS = 10; break;	case 192: ROUNDS = 12; break;	case 256: ROUNDS = 14; break;	default : return (-3); /* this cannot happen */	}	/* begin with a key addition	 */	AddRoundKey(a,rk[0],BC);         /* ROUNDS-1 ordinary rounds	 */	for(r = 1; r < ROUNDS; r++) {		Substitution(a,S,BC);		ShiftRows(a,0,BC);		MixColumns(a,BC);		AddRoundKey(a,rk[r],BC);	}		/* Last round is special: there is no MixColumns	 */	Substitution(a,S,BC);	ShiftRows(a,0,BC);	AddRoundKey(a,rk[ROUNDS],BC);	return 0;}   int rijndaelEncryptRound (word8 a[4][MAXBC], int keyBits, int blockBits, 		word8 rk[MAXROUNDS+1][4][MAXBC], int rounds)/* Encrypt only a certain number of rounds. * Only used in the Intermediate Value Known Answer Test. */{	int r, BC, ROUNDS;	switch (blockBits) {	case 128: BC = 4; break;	case 192: BC = 6; break;	case 256: BC = 8; break;	default : return (-2);	}	switch (keyBits >= blockBits ? keyBits : blockBits) {	case 128: ROUNDS = 10; break;	case 192: ROUNDS = 12; break;	case 256: ROUNDS = 14; break;	default : return (-3); /* this cannot happen */	}	/* make number of rounds sane */	if (rounds > ROUNDS) rounds = ROUNDS;	/* begin with a key addition	 */	AddRoundKey(a,rk[0],BC);        	/* at most ROUNDS-1 ordinary rounds	 */	for(r = 1; (r <= rounds) && (r < ROUNDS); r++) {		Substitution(a,S,BC);		ShiftRows(a,0,BC);		MixColumns(a,BC);		AddRoundKey(a,rk[r],BC);	}		/* if necessary, do the last, special, round: 	 */	if (rounds == ROUNDS) {		Substitution(a,S,BC);		ShiftRows(a,0,BC);		AddRoundKey(a,rk[ROUNDS],BC);	}	return 0;}   int rijndaelDecrypt (word8 a[4][MAXBC], int keyBits, int blockBits, 		word8 rk[MAXROUNDS+1][4][MAXBC]){	int r, BC, ROUNDS;		switch (blockBits) {	case 128: BC = 4; break;	case 192: BC = 6; break;	case 256: BC = 8; break;	default : return (-2);	}	switch (keyBits >= blockBits ? keyBits : blockBits) {	case 128: ROUNDS = 10; break;	case 192: ROUNDS = 12; break;	case 256: ROUNDS = 14; break;	default : return (-3); /* this cannot happen */	}	/* To decrypt: apply the inverse operations of the encrypt routine,	 *             in opposite order	 * 	 * (AddRoundKey is an involution: it 's equal to its inverse)	 * (the inverse of Substitution with table S is Substitution with          *           the inverse table of S)	 * (the inverse of ShiftRows is ShiftRows over a suitable distance)	 */        /* First the special round:	 *   without InvMixColumns	 *   with extra AddRoundKey	 */	AddRoundKey(a,rk[ROUNDS],BC);	Substitution(a,Si,BC);	ShiftRows(a,1,BC);              		/* ROUNDS-1 ordinary rounds	 */	for(r = ROUNDS-1; r > 0; r--) {		AddRoundKey(a,rk[r],BC);		InvMixColumns(a,BC);      		Substitution(a,Si,BC);		ShiftRows(a,1,BC);                	}		/* End with the extra key addition	 */		AddRoundKey(a,rk[0],BC);    	return 0;}int rijndaelDecryptRound (word8 a[4][MAXBC], int keyBits, int blockBits, 	word8 rk[MAXROUNDS+1][4][MAXBC], int rounds)/* Decrypt only a certain number of rounds. * Only used in the Intermediate Value Known Answer Test. * Operations rearranged such that the intermediate values * of decryption correspond with the intermediate values * of encryption. */{	int r, BC, ROUNDS;		switch (blockBits) {	case 128: BC = 4; break;	case 192: BC = 6; break;	case 256: BC = 8; break;	default : return (-2);	}	switch (keyBits >= blockBits ? keyBits : blockBits) {	case 128: ROUNDS = 10; break;	case 192: ROUNDS = 12; break;	case 256: ROUNDS = 14; break;	default : return (-3); /* this cannot happen */	}	/* make number of rounds sane */	if (rounds > ROUNDS) rounds = ROUNDS;        /* First the special round:	 *   without InvMixColumns	 *   with extra AddRoundKey	 */	AddRoundKey(a,rk[ROUNDS],BC);	Substitution(a,Si,BC);	ShiftRows(a,1,BC);              		/* ROUNDS-1 ordinary rounds	 */	for(r = ROUNDS-1; r > rounds; r--) {		AddRoundKey(a,rk[r],BC);		InvMixColumns(a,BC);      		Substitution(a,Si,BC);		ShiftRows(a,1,BC);                	}		if (rounds == 0) {		/* End with the extra key addition		 */			AddRoundKey(a,rk[0],BC);	}    	return 0;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -