⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 nc_test_slave.c

📁 eCos/RedBoot for勤研ARM AnywhereII(4510) 含全部源代码
💻 C
📖 第 1 页 / 共 2 页
字号:
            tdp->seq = htonl(seq);
            td_len = ntohl(req->buflen) + sizeof(struct nc_test_data);
            tdp->len = htonl(td_len);
            if (write(test_chan, tdp, td_len) != td_len) {
                perror("write");
                if (errno == ENOBUFS) {
                    // Saturated the system
                    test_delay(25);
                } else {
                    // What else to do?
                    close(test_chan);
                    return;
                }
            } else {
                nsent++;
            }
        }
        seq++;
    }
    results.key1 = htonl(NC_TEST_RESULT_KEY1);
    results.key2 = htonl(NC_TEST_RESULT_KEY2);
    results.seq = req->seq;
    results.nsent = htonl(nsent);
    results.nrecvd = htonl(nrecvd);
    if (write(test_chan, &results, sizeof(results)) != sizeof(results)) {
        perror("write");
    }
    close(test_chan);
}

//
// Protocol driver for testing slave.
//
// This function is the main routine running here, handling requests sent from
// the master and providing various responses.
//
static void
nc_slave(test_param_t param)
{
    int s, masterlen;
    struct sockaddr_in my_addr, master;
    struct nc_request req;
    struct nc_reply reply;
    int done = false;

    test_printf("Start test for eth%d\n", param);

    s = socket(AF_INET, SOCK_DGRAM, 0);
    if (s < 0) {
        pexit("datagram socket");
    }

    memset((char *) &my_addr, 0, sizeof(my_addr));
    my_addr.sin_family = AF_INET;
#ifdef __ECOS
    my_addr.sin_len = sizeof(my_addr);
#endif
    my_addr.sin_addr.s_addr = htonl(INADDR_ANY);
    my_addr.sin_port = htons(NC_SLAVE_PORT);
    
    if (bind(s, (struct sockaddr *) &my_addr, sizeof(my_addr)) < 0) {
        pexit("bind");
    }

    while (!done) {
        masterlen = sizeof(master);
        if (recvfrom(s, &req, sizeof(req), 0, (struct sockaddr *)&master, &masterlen) < 0) {
            pexit("recvfrom");
        }
#if 0
        test_printf("Request %d from %s:%d\n", ntohl(req.type), 
                    inet_ntoa(master.sin_addr), ntohs(master.sin_port));
#endif
        reply.response = htonl(NC_REPLY_ACK);
        reply.seq = req.seq;
        switch (ntohl(req.type)) {
        case NC_REQUEST_DISCONNECT:
            done = true;
            break;
        case NC_REQUEST_UDP_SEND:
            test_printf("UDP send - %d buffers, %d bytes\n", ntohl(req.nbufs), ntohl(req.buflen));
            break;
        case NC_REQUEST_UDP_RECV:
            test_printf("UDP recv - %d buffers, %d bytes\n", ntohl(req.nbufs), ntohl(req.buflen));
            break;
        case NC_REQUEST_UDP_ECHO:
            test_printf("UDP echo - %d buffers, %d bytes\n", ntohl(req.nbufs), ntohl(req.buflen));
            break;
        case NC_REQUEST_TCP_SEND:
            test_printf("TCP send - %d buffers, %d bytes\n", ntohl(req.nbufs), ntohl(req.buflen));
            break;
        case NC_REQUEST_TCP_RECV:
            test_printf("TCP recv - %d buffers, %d bytes\n", ntohl(req.nbufs), ntohl(req.buflen));
            break;
        case NC_REQUEST_TCP_ECHO:
            test_printf("TCP echo - %d buffers, %d bytes\n", ntohl(req.nbufs), ntohl(req.buflen));
            break;
#ifdef __ECOS
        case NC_REQUEST_SET_LOAD:
            start_load(ntohl(req.nbufs));
            break;
        case NC_REQUEST_START_IDLE:
            test_printf("Start IDLE thread\n");
            idle_thread_count = 0;
            idle_thread_start_time = cyg_current_time();
            cyg_semaphore_post(&idle_thread_sem);
            break;
        case NC_REQUEST_STOP_IDLE:
            cyg_semaphore_wait(&idle_thread_sem);
            idle_thread_stop_time = cyg_current_time();
            test_printf("Stop IDLE thread\n");
            reply.misc.idle_results.elapsed_time = htonl(idle_thread_stop_time - idle_thread_start_time);
            reply.misc.idle_results.count[0] = htonl(idle_thread_count >> 32);
            reply.misc.idle_results.count[1] = htonl((long)idle_thread_count);
            break;
#endif
        default:
            test_printf("Unrecognized request: %d\n", ntohl(req.type));
            reply.response = htonl(NC_REPLY_NAK);
            reply.reason = htonl(NC_REPLY_NAK_UNKNOWN_REQUEST);
            break;
        }
        if (sendto(s, &reply, sizeof(reply), 0, (struct sockaddr *)&master, masterlen) < 0) {
            pexit("sendto");
        }
        if (reply.response == ntohl(NC_REPLY_NAK)) {
            continue;
        }
        switch (ntohl(req.type)) {
        case NC_REQUEST_UDP_SEND:
        case NC_REQUEST_UDP_RECV:
        case NC_REQUEST_UDP_ECHO:
            do_udp_test(s, &req, &master);
            break;
        case NC_REQUEST_TCP_SEND:
        case NC_REQUEST_TCP_RECV:
        case NC_REQUEST_TCP_ECHO:
            do_tcp_test(s, &req, &master);
            break;
        case NC_REQUEST_START_IDLE:
        case NC_REQUEST_STOP_IDLE:
        case NC_REQUEST_SET_LOAD:
        default:
            break;
        }
    }
    close(s);
}

void
net_test(test_param_t param)
{
//    int i;
    if (param == 0) {
        test_printf("Start Network Characterization - SLAVE\n");
#ifdef __ECOS
        init_all_network_interfaces();
        calibrate_load(DESIRED_BACKGROUND_LOAD);
#if 0
// I can see what this is trying to do, but I get "bind: Address already in
// use" errors from the 2nd interface - and the parameter is not used
// anyway, so one thread does quite well enough (but only tests one i/f at
// once).

// Comment in the 'int i' above too.
        for (i = 1;  i < CYGHWR_NET_DRIVERS;  i++) {
            cyg_thread_resume(main_thread_handle[i]);   // Start other threads
        }
#endif
#endif
    }
    nc_slave(param);
#ifdef CYGDBG_NET_TIMING_STATS
    show_net_times();
#endif
    cyg_test_exit();
}

#ifdef __ECOS

//
// This function is called to calibrate the "background load" which can be
// applied during testing.  It will be called before any commands from the
// host are managed.
//
static void
calibrate_load(int desired_load)
{
    long long no_load_idle, load_idle;
    int percent_load;
    int high, low;

    // Set limits
    high = MAX_LOAD_THREAD_LEVEL;
    low = MIN_LOAD_THREAD_LEVEL;

    // Compute the "no load" idle value
    idle_thread_count = 0;
    cyg_semaphore_post(&idle_thread_sem);  // Start idle thread
    cyg_thread_delay(1*100);               // Pause for one second
    cyg_semaphore_wait(&idle_thread_sem);  // Stop idle thread
    no_load_idle = idle_thread_count;
    diag_printf("No load = %d\n", (int)idle_thread_count);

    // First ensure that the HIGH level is indeed higher
    while (true) {
        load_thread_level = high;
        start_load(desired_load);              // Start up a given load
        idle_thread_count = 0;
        cyg_semaphore_post(&idle_thread_sem);  // Start idle thread
        cyg_thread_delay(1*100);               // Pause for one second
        cyg_semaphore_wait(&idle_thread_sem);  // Stop idle thread
        load_idle = idle_thread_count;
        start_load(0);                         // Shut down background load
        percent_load = 100 - ((load_idle * 100) / no_load_idle);
        diag_printf("High Load[%d] = %d => %d%%\n", load_thread_level, 
                    (int)idle_thread_count, percent_load);
        if ( percent_load > desired_load )
            break; // HIGH level is indeed higher
        low = load_thread_level; // known to be lower
        high *= 2; // else double it and try again
    }

    // Now chop down to the level required
    while (true) {
        load_thread_level = (high + low) / 2;
        start_load(desired_load);              // Start up a given load
        idle_thread_count = 0;
        cyg_semaphore_post(&idle_thread_sem);  // Start idle thread
        cyg_thread_delay(1*100);               // Pause for one second
        cyg_semaphore_wait(&idle_thread_sem);  // Stop idle thread
        load_idle = idle_thread_count;
        start_load(0);                         // Shut down background load
        percent_load = 100 - ((load_idle * 100) / no_load_idle);
        diag_printf("Load[%d] = %d => %d%%\n", load_thread_level, 
                    (int)idle_thread_count, percent_load);
        if (((high-low) <= 1) || (abs(desired_load-percent_load) <= 2)) break;
        if (percent_load < desired_load) {
            low = load_thread_level;
        } else {            
            high = load_thread_level;
        }
    }

    // Now we are within a few percent of the target; scale the load
    // factor to get a better fit, and test it, print the answer.
    load_thread_level *= desired_load;
    load_thread_level /= percent_load;
    start_load(desired_load);              // Start up a given load
    idle_thread_count = 0;
    cyg_semaphore_post(&idle_thread_sem);  // Start idle thread
    cyg_thread_delay(1*100);               // Pause for one second
    cyg_semaphore_wait(&idle_thread_sem);  // Stop idle thread
    load_idle = idle_thread_count;
    start_load(0);                         // Shut down background load
    percent_load = 100 - ((load_idle * 100) / no_load_idle);
    diag_printf("Final load[%d] = %d => %d%%\n", load_thread_level, 
                (int)idle_thread_count, percent_load);
//    no_load_idle_count_1_second = no_load_idle;
}

//
// This function is called to set up a load level of 'load' percent (given
// as a whole number, e.g. start_load(20) would mean initiate a background
// load of 20%, leaving the cpu 80% idle).
//
static void
start_load(int load)
{
    static int prev_load = 0;
    int i;
    test_printf("Set background load = %d%%\n", load);
    if (load == 0) {
        if (prev_load == 0) return;  // Nothing out there to stop
        for (i = 0;  i < prev_load/10;  i++) {
            cyg_semaphore_wait(&load_thread_sem[i]);
        }
        prev_load = 0;
    } else {
        for (i = 0;  i < load/10;  i++) {
            cyg_semaphore_post(&load_thread_sem[i]);
        }
        prev_load = load;
    }
}

//
// These thread(s) do some amount of "background" computing.  This is used
// to simulate a given load level.  They need to be run at a higher priority 
// than the network code itself.
//
// Like the "idle" thread, they run as long as their "switch" (aka semaphore)
// is enabled.
//
void
net_load(cyg_addrword_t who)
{
    int i;
    while (true) {
        cyg_semaphore_wait(&load_thread_sem[who]);
        for (i = 0;  i < load_thread_level;  i++) {
            do_some_random_computation(i);
        }
        cyg_thread_delay(1);  // Wait until the next 'tick'
        cyg_semaphore_post(&load_thread_sem[who]);
    }
}

//
// Some arbitrary computation, designed to use up the CPU and cause associated
// cache "thrash" behaviour - part of background load modelling.
//
static void
do_some_random_computation(int p)
{
    // Just something that might be "hard"
    volatile double x;
    x = ((p * 10) * 3.14159) / 180.0;  // radians
}

//
// This thread does nothing but count.  It will be allowed to count
// as long as the semaphore is "free".  
//
void
net_idle(cyg_addrword_t param)
{
    while (true) {
        cyg_semaphore_wait(&idle_thread_sem);
        idle_thread_count++;
        cyg_semaphore_post(&idle_thread_sem);
    }
}

void
cyg_start(void)
{
    int i;
    // Create processing threads
    for (i = 0;  i < CYGHWR_NET_DRIVERS;  i++) {
        cyg_thread_create(MAIN_THREAD_PRIORITY,     // Priority
                          net_test,                 // entry
                          i,                        // entry parameter
                          "Network test",           // Name
                          &main_thread_stack[i][0], // Stack
                          STACK_SIZE,               // Size
                          &main_thread_handle[i],   // Handle
                          &main_thread_data[i]      // Thread data structure
            );
    }
    cyg_thread_resume(main_thread_handle[0]);   // Start first one
    // Create the idle thread environment
    cyg_semaphore_init(&idle_thread_sem, 0);
    cyg_thread_create(IDLE_THREAD_PRIORITY,     // Priority
                      net_idle,                 // entry
                      0,                        // entry parameter
                      "Network idle",           // Name
                      &idle_thread_stack[0],    // Stack
                      STACK_SIZE,               // Size
                      &idle_thread_handle,      // Handle
                      &idle_thread_data         // Thread data structure
            );
    cyg_thread_resume(idle_thread_handle);      // Start it
    // Create the load threads and their environment(s)
    for (i = 0;  i < NUM_LOAD_THREADS;  i++) {
        cyg_semaphore_init(&load_thread_sem[i], 0);
        cyg_thread_create(LOAD_THREAD_PRIORITY,     // Priority
                          net_load,                 // entry
                          i,                        // entry parameter
                          "Background load",        // Name
                          &load_thread_stack[i][0], // Stack
                          STACK_SIZE,               // Size
                          &load_thread_handle[i],   // Handle
                          &load_thread_data[i]      // Thread data structure
            );
        cyg_thread_resume(load_thread_handle[i]);   // Start it
    }
    cyg_scheduler_start();
}

#else

int 
main(int argc, char *argv[])
{
    net_test(0);
}
#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -