📄 test1.c
字号:
//===========================================================================
//
// test1.c
//
// uITRON "C" test program one
//
//===========================================================================
//####ECOSGPLCOPYRIGHTBEGIN####
// -------------------------------------------
// This file is part of eCos, the Embedded Configurable Operating System.
// Copyright (C) 1998, 1999, 2000, 2001, 2002 Red Hat, Inc.
//
// eCos is free software; you can redistribute it and/or modify it under
// the terms of the GNU General Public License as published by the Free
// Software Foundation; either version 2 or (at your option) any later version.
//
// eCos is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// You should have received a copy of the GNU General Public License along
// with eCos; if not, write to the Free Software Foundation, Inc.,
// 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
//
// As a special exception, if other files instantiate templates or use macros
// or inline functions from this file, or you compile this file and link it
// with other works to produce a work based on this file, this file does not
// by itself cause the resulting work to be covered by the GNU General Public
// License. However the source code for this file must still be made available
// in accordance with section (3) of the GNU General Public License.
//
// This exception does not invalidate any other reasons why a work based on
// this file might be covered by the GNU General Public License.
//
// Alternative licenses for eCos may be arranged by contacting Red Hat, Inc.
// at http://sources.redhat.com/ecos/ecos-license/
// -------------------------------------------
//####ECOSGPLCOPYRIGHTEND####
//===========================================================================
//#####DESCRIPTIONBEGIN####
//
// Author(s): hmt
// Contributors: hmt
// Date: 1998-03-13
// Purpose: uITRON API testing
// Description:
//
//####DESCRIPTIONEND####
//
//===========================================================================
#include <pkgconf/uitron.h> // uITRON setup CYGNUM_UITRON_SEMAS
// CYGPKG_UITRON et al
#include <cyg/infra/testcase.h> // testing infrastructure
#ifdef CYGPKG_UITRON // we DO want the uITRON package
#ifdef CYGSEM_KERNEL_SCHED_MLQUEUE // we DO want prioritized threads
#ifdef CYGFUN_KERNEL_THREADS_TIMER // we DO want timout-able calls
#ifdef CYGVAR_KERNEL_COUNTERS_CLOCK // we DO want the realtime clock
// we're OK if it's C++ or neither of those two is defined:
#if defined( __cplusplus ) || \ (!defined( CYGIMP_UITRON_INLINE_FUNCS ) && \ !defined( CYGIMP_UITRON_CPP_OUTLINE_FUNCS) )
// =================== TEST CONFIGURATION ===================
#if \ /* test configuration for enough tasks */ \ (CYGNUM_UITRON_TASKS >= 4) && \ (CYGNUM_UITRON_TASKS < 90) && \ (CYGNUM_UITRON_START_TASKS == 1) && \ ( !defined(CYGPKG_UITRON_TASKS_CREATE_DELETE) || \ CYGNUM_UITRON_TASKS_INITIALLY >= 4 ) && \ \ /* the end of the large #if statement */ \ 1
// ============================ END ============================
#include <cyg/compat/uitron/uit_func.h> // uITRON
externC void
cyg_package_start( void )
{
CYG_TEST_INIT();
CYG_TEST_INFO( "Calling cyg_uitron_start()" );
cyg_uitron_start();
}
volatile int intercom = 0;
volatile int intercount = 0;
INT scratch = 0;
#ifndef CYGSEM_KERNEL_SCHED_TIMESLICE
#define TIMESLICEMSG "Assuming no kernel timeslicing"
#define TSGO() (1)
#define TSRELEASE() CYG_EMPTY_STATEMENT
#define TSSTOP() CYG_EMPTY_STATEMENT
#define TSLOCK() CYG_EMPTY_STATEMENT
#define TSUNLOCK() CYG_EMPTY_STATEMENT
#define ICWAIT( _i_ ) CYG_EMPTY_STATEMENT
#else
// Now follow some nasty bodges to control the scheduling when basically it
// isn't controlled ie. timeslicing is on. It's bodgy because we're
// testing normal synchronization methods, so we shouldn't rely on them for
// comms between threads here. Instead there's a mixture of communicating
// via a flag (ts_interlock) which stops the "controlled" thread running
// away, and waiting for the controlled thread to run enough for us.
//
// Tasks 3 and 4 are waited for by the control task: task 3 locks the
// scheduler so is immediately descheduled when it unlocks it, task 4 does
// waiting-type operations, so we must give it chance to run by yielding a
// few times ourselves. Note the plain constant in ICWAIT() below.
#define TIMESLICEMSG "Assuming kernel timeslicing ENABLED"
volatile int ts_interlock = 0;
#define TSGO() (ts_interlock)
#define TSRELEASE() ts_interlock = 1
#define TSSTOP() ts_interlock = 0
#define TSLOCK() CYG_MACRO_START \ ER ercd2 = dis_dsp(); \ CYG_TEST_CHECK( E_OK == ercd2, "dis_dsp (TSLOCK) bad ercd2" ); \CYG_MACRO_END
#define TSUNLOCK() CYG_MACRO_START \ ER ercd3 = ena_dsp(); \ CYG_TEST_CHECK( E_OK == ercd3, "ena_dsp (TSUNLOCK) bad ercd3" ); \CYG_MACRO_END
#define ICWAIT( _i_ ) CYG_MACRO_START \ int loops; \ for ( loops = 3; (0 < loops) || ((_i_) > intercount); loops-- ) { \ ER ercd4 = rot_rdq( 0 ); /* yield */ \ CYG_TEST_CHECK( E_OK == ercd4, "rot_rdq (ICWAIT) bad ercd4" ); \ } \CYG_MACRO_END
#endif // CYGSEM_KERNEL_SCHED_TIMESLICE
/*
#define IC() \CYG_MACRO_START \ static char *msgs[] = { "ZERO", "ONE", "TWO", "THREE", "FOUR", "LOTS" }; \ CYG_TEST_INFO( msgs[ intercount > 5 ? 5 : intercount ] ); \CYG_MACRO_END
*/
// #define CYG_TEST_UITRON_TEST1_LOOPING 1
void task1( unsigned int arg )
{
ER ercd;
T_RTSK ref_tskd;
#ifdef CYG_TEST_UITRON_TEST1_LOOPING
while ( 1 ) {
#endif // CYG_TEST_UITRON_TEST1_LOOPING
CYG_TEST_INFO( "Task 1 running" );
CYG_TEST_INFO( TIMESLICEMSG );
intercom = 0;
intercount = 0;
CYG_TEST_INFO( "Testing get_tid and ref_tsk" );
ercd = get_tid( &scratch );
CYG_TEST_CHECK( E_OK == ercd, "get_tid bad ercd" );
CYG_TEST_CHECK( 1 == scratch, "tid not 1" );
#ifdef CYGSEM_UITRON_BAD_PARAMS_RETURN_ERRORS
#ifndef CYGSEM_UITRON_PARAMS_NULL_IS_GOOD_PTR
ercd = get_tid( NULL );
CYG_TEST_CHECK( E_PAR == ercd, "get_tid bad ercd !E_PAR" );
#endif
ercd = get_tid( NADR );
CYG_TEST_CHECK( E_PAR == ercd, "get_tid bad ercd !E_PAR" );
ercd = ref_tsk( &ref_tskd, -6 );
CYG_TEST_CHECK( E_ID == ercd, "ref_tsk bad ercd !E_ID" );
ercd = ref_tsk( &ref_tskd, 99 );
CYG_TEST_CHECK( E_ID == ercd, "ref_tsk bad ercd !E_ID" );
#ifndef CYGSEM_UITRON_PARAMS_NULL_IS_GOOD_PTR
ercd = ref_tsk( NULL, 1 );
CYG_TEST_CHECK( E_PAR == ercd, "ref_tsk bad ercd !E_PAR" );
#endif
ercd = ref_tsk( NADR, 1 );
CYG_TEST_CHECK( E_PAR == ercd, "ref_tsk bad ercd !E_PAR" );
#endif // we can test bad param error returns
ercd = ref_tsk( &ref_tskd, 1 );
CYG_TEST_CHECK( E_OK == ercd, "ref_tsk bad ercd" );
CYG_TEST_CHECK( TTS_RUN == ref_tskd.tskstat, "Bad task status 1" );
ercd = ref_tsk( &ref_tskd, 0 );
CYG_TEST_CHECK( E_OK == ercd, "ref_tsk bad ercd" );
CYG_TEST_CHECK( TTS_RUN == ref_tskd.tskstat, "Bad task status 0" );
ercd = ref_tsk( &ref_tskd, 2 );
CYG_TEST_CHECK( E_OK == ercd, "ref_tsk bad ercd" );
CYG_TEST_CHECK( TTS_DMT == ref_tskd.tskstat, "Bad task status 2" );
CYG_TEST_CHECK( 2 == ref_tskd.tskpri, "Bad task prio 2" );
ercd = rsm_tsk( 2 );
CYG_TEST_CHECK( E_OBJ == ercd, "rsm_tsk DMT bad ercd !E_OBJ" );
ercd = frsm_tsk( 2 );
CYG_TEST_CHECK( E_OBJ == ercd, "frsm_tsk DMT bad ercd !E_OBJ" );
ercd = rel_wai( 2 );
CYG_TEST_CHECK( E_OBJ == ercd, "rel_wai DMT bad ercd !E_OBJ" );
ercd = sus_tsk( 2 );
CYG_TEST_CHECK( E_OBJ == ercd, "sus_tsk DMT bad ercd !E_OBJ" );
ercd = wup_tsk( 2 );
CYG_TEST_CHECK( E_OBJ == ercd, "wup_tsk DMT bad ercd !E_OBJ" );
ercd = can_wup( &scratch, 2 );
CYG_TEST_CHECK( E_OBJ == ercd, "can_wup DMT bad ercd !E_OBJ" );
CYG_TEST_PASS( "get_tid, ref_tsk" );
CYG_TEST_INFO( "Testing prio change and start task" );
ercd = sta_tsk( 2, 99 );
CYG_TEST_CHECK( E_OK == ercd, "sta_tsk bad ercd" );
// drop pri of task 2
ercd = chg_pri( 2, 4 );
CYG_TEST_CHECK( E_OK == ercd, "chg_pri bad ercd" );
ercd = ref_tsk( &ref_tskd, 2 );
CYG_TEST_CHECK( E_OK == ercd, "ref_tsk bad ercd" );
CYG_TEST_CHECK( TTS_RDY == ref_tskd.tskstat, "Bad task status 2" );
CYG_TEST_CHECK( 4 == ref_tskd.tskpri, "Bad task prio 2" );
// drop our pri below task 2
ercd = chg_pri( 0, 5 );
CYG_TEST_CHECK( E_OK == ercd, "chg_pri bad ercd" );
ercd = ref_tsk( &ref_tskd, 1 );
CYG_TEST_CHECK( E_OK == ercd, "ref_tsk bad ercd" );
CYG_TEST_CHECK( 5 == ref_tskd.tskpri, "Bad task prio 1" );
ercd = ref_tsk( &ref_tskd, 0 );
CYG_TEST_CHECK( E_OK == ercd, "ref_tsk bad ercd" );
CYG_TEST_CHECK( 5 == ref_tskd.tskpri, "Bad task prio 0" );
ercd = ref_tsk( &ref_tskd, 2 );
CYG_TEST_CHECK( E_OK == ercd, "ref_tsk bad ercd" );
// it will have run to completion and regained its original prio
CYG_TEST_CHECK( 2 == ref_tskd.tskpri, "Bad task prio 2" );
CYG_TEST_CHECK( TTS_DMT == ref_tskd.tskstat, "Bad task status 2" );
// retest these now that the task has executed once
ercd = rsm_tsk( 2 );
CYG_TEST_CHECK( E_OBJ == ercd, "rsm_tsk DMT bad ercd !E_OBJ" );
ercd = frsm_tsk( 2 );
CYG_TEST_CHECK( E_OBJ == ercd, "frsm_tsk DMT bad ercd !E_OBJ" );
ercd = rel_wai( 2 );
CYG_TEST_CHECK( E_OBJ == ercd, "rel_wai DMT bad ercd !E_OBJ" );
ercd = sus_tsk( 2 );
CYG_TEST_CHECK( E_OBJ == ercd, "sus_tsk DMT bad ercd !E_OBJ" );
ercd = wup_tsk( 2 );
CYG_TEST_CHECK( E_OBJ == ercd, "wup_tsk DMT bad ercd !E_OBJ" );
ercd = can_wup( &scratch, 2 );
CYG_TEST_CHECK( E_OBJ == ercd, "can_wup DMT bad ercd !E_OBJ" );
#ifdef CYGSEM_UITRON_BAD_PARAMS_RETURN_ERRORS
ercd = chg_pri( -6, 9 );
CYG_TEST_CHECK( E_ID == ercd, "chg_pri bad ercd !E_ID" );
ercd = chg_pri( 99, 9 );
CYG_TEST_CHECK( E_ID == ercd, "chg_pri bad ercd !E_ID" );
ercd = sta_tsk( -6, 99 );
CYG_TEST_CHECK( E_ID == ercd, "sta_tsk bad ercd !E_ID" );
ercd = sta_tsk( 99, 99 );
CYG_TEST_CHECK( E_ID == ercd, "sta_tsk bad ercd !E_ID" );
#endif // we can test bad param error returns
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -