📄 ztrees.cpp
字号:
for (n = 0; n < elems; n++) {
if (tree[n].Freq != 0) {
heap[++heap_len] = max_code = n;
depth[n] = 0;
} else {
tree[n].Len = 0;
}
}
/* The pkzip format requires that at least one distance code exists,
* and that at least one bit should be sent even if there is only one
* possible code. So to avoid special checks later on we force at least
* two codes of non zero frequency.
*/
while (heap_len < 2) {
int _new = heap[++heap_len] = (max_code < 2 ? ++max_code : 0);
tree[_new].Freq = 1;
depth[_new] = 0;
opt_len--; if (stree) static_len -= stree[_new].Len;
/* new is 0 or 1 so it does not have extra bits */
}
desc->max_code = max_code;
/* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
* establish sub-heaps of increasing lengths:
*/
for (n = heap_len/2; n >= 1; n--) pqdownheap(tree, n);
/* Construct the Huffman tree by repeatedly combining the least two
* frequent nodes.
*/
do {
pqremove(tree, n); /* n = node of least frequency */
m = heap[SMALLEST]; /* m = node of next least frequency */
heap[--heap_max] = n; /* keep the nodes sorted by frequency */
heap[--heap_max] = m;
/* Create a new node father of n and m */
tree[node].Freq = tree[n].Freq + tree[m].Freq;
depth[node] = (byte) (MAX(depth[n], depth[m]) + 1);
tree[n].Dad = tree[m].Dad = node;
#ifdef DUMP_BL_TREE
if (tree == bl_tree) {
fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
}
#endif
/* and insert the new node in the heap */
heap[SMALLEST] = node++;
pqdownheap(tree, SMALLEST);
} while (heap_len >= 2);
heap[--heap_max] = heap[SMALLEST];
/* At this point, the fields freq and dad are set. We can now
* generate the bit lengths.
*/
gen_bitlen(desc);
/* The field len is now set, we can generate the bit codes */
gen_codes (tree, max_code);
}
/* ===========================================================================
* Scan a literal or distance tree to determine the frequencies of the codes
* in the bit length tree. Updates opt_len to take into account the repeat
* counts. (The contribution of the bit length codes will be added later
* during the construction of bl_tree.)
*/
void CodeTree::scan_tree (ct_data *tree, int max_code)
{
int n; /* iterates over all tree elements */
int prevlen = -1; /* last emitted length */
int curlen; /* length of current code */
int nextlen = tree[0].Len; /* length of next code */
int count = 0; /* repeat count of the current code */
int max_count = 7; /* max repeat count */
int min_count = 4; /* min repeat count */
if (nextlen == 0) max_count = 138, min_count = 3;
tree[max_code+1].Len = (word16)-1; /* guard */
for (n = 0; n <= max_code; n++) {
curlen = nextlen; nextlen = tree[n+1].Len;
if (++count < max_count && curlen == nextlen) {
continue;
} else if (count < min_count) {
bl_tree[curlen].Freq += count;
} else if (curlen != 0) {
if (curlen != prevlen) bl_tree[curlen].Freq++;
bl_tree[REP_3_6].Freq++;
} else if (count <= 10) {
bl_tree[REPZ_3_10].Freq++;
} else {
bl_tree[REPZ_11_138].Freq++;
}
count = 0; prevlen = curlen;
if (nextlen == 0) {
max_count = 138, min_count = 3;
} else if (curlen == nextlen) {
max_count = 6, min_count = 3;
} else {
max_count = 7, min_count = 4;
}
}
}
/* Send a literal or distance tree in compressed form,
using the codes in bl_tree. */
void CodeTree::send_tree (ct_data *tree, int max_code)
{
int n; /* iterates over all tree elements */
int prevlen = -1; /* last emitted length */
int curlen; /* length of current code */
int nextlen = tree[0].Len; /* length of next code */
int count = 0; /* repeat count of the current code */
int max_count = 7; /* max repeat count */
int min_count = 4; /* min repeat count */
/* tree[max_code+1].Len = -1; */ /* guard already set */
if (nextlen == 0) max_count = 138, min_count = 3;
for (n = 0; n <= max_code; n++) {
curlen = nextlen; nextlen = tree[n+1].Len;
if (++count < max_count && curlen == nextlen) {
continue;
} else if (count < min_count) {
do {
send_code(curlen, bl_tree);
} while (--count != 0);
} else if (curlen != 0) {
if (curlen != prevlen) {
send_code(curlen, bl_tree);
count--;
}
assert(count >= 3 && count <= 6);
send_code(REP_3_6, bl_tree);
send_bits(count-3, 2);
} else if (count <= 10) {
send_code(REPZ_3_10, bl_tree);
send_bits(count-3, 3);
} else {
send_code(REPZ_11_138, bl_tree);
send_bits(count-11, 7);
}
count = 0; prevlen = curlen;
if (nextlen == 0) {
max_count = 138, min_count = 3;
} else if (curlen == nextlen) {
max_count = 6, min_count = 3;
} else {
max_count = 7, min_count = 4;
}
}
}
/* Construct the Huffman tree for the bit lengths and return the index in
bl_order of the last bit length code to send. */
int CodeTree::build_bl_tree()
{
int max_blindex; /* index of last bit length code of non zero freq */
/* Determine the bit length frequencies for literal and distance trees */
scan_tree(dyn_ltree, l_desc.max_code);
scan_tree(dyn_dtree, d_desc.max_code);
/* Build the bit length tree: */
build_tree(&bl_desc);
/* opt_len now includes the length of the tree representations, except
* the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
*/
/* Determine the number of bit length codes to send. The pkzip format
* requires that at least 4 bit length codes be sent. (appnote.txt says
* 3 but the actual value used is 4.)
*/
for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
if (bl_tree[bl_order[max_blindex]].Len != 0) break;
}
/* Update opt_len to include the bit length tree and counts */
opt_len += 3*(max_blindex+1) + 5+5+4;
// Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", opt_len, static_len));
return max_blindex;
}
/* Send the header for a block using dynamic Huffman trees: the counts, the
* lengths of the bit length codes, the literal tree and the distance tree.
* IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. */
void CodeTree::send_all_trees(int lcodes, int dcodes, int blcodes)
{
int rank; /* index in bl_order */
assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4);
assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES);
// Tracev((stderr, "\nbl counts: "));
send_bits(lcodes-257, 5);
/* not +255 as stated in appnote.txt 1.93a or -256 in 2.04c */
send_bits(dcodes-1, 5);
/* not -3 as stated in appnote.txt */
send_bits(blcodes-4, 4);
for (rank = 0; rank < blcodes; rank++) {
// Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
send_bits(bl_tree[bl_order[rank]].Len, 3);
}
// Tracev((stderr, "\nbl tree: sent %ld", bits_sent));
/* send the literal tree */
send_tree(dyn_ltree, lcodes-1);
// Tracev((stderr, "\nlit tree: sent %ld", bits_sent));
/* send the distance tree */
send_tree(dyn_dtree, dcodes-1);
// Tracev((stderr, "\ndist tree: sent %ld", bits_sent));
}
/* ===========================================================================
* Determine the best encoding for the current block: dynamic trees, static
* trees or store, and output the encoded block to the zip file. This function
* returns the total compressed length for the file so far.
*/
word32 CodeTree::flush_block(byte *buf, word32 stored_len, int eof)
{
word32 opt_lenb, static_lenb; /* opt_len and static_len in bytes */
int max_blindex; /* index of last bit length code of non zero freq */
flag_buf[last_flags] = flags; /* Save the flags for the last 8 items */
/* Construct the literal and distance trees */
build_tree(&l_desc);
// Tracev((stderr, "\nlit data: dyn %ld, stat %ld", opt_len, static_len));
build_tree(&d_desc);
// Tracev((stderr, "\ndist data: dyn %ld, stat %ld", opt_len, static_len));
/* At this point, opt_len and static_len are the total bit lengths of
* the compressed block data, excluding the tree representations.
*/
/* Build the bit length tree for the above two trees, and get the index
* in bl_order of the last bit length code to send.
*/
max_blindex = build_bl_tree();
/* Determine the best encoding. Compute first the block length in bytes */
opt_lenb = (opt_len+3+7)>>3;
static_lenb = (static_len+3+7)>>3;
input_len += stored_len; /* for debugging only */
// Trace((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u dist %u ",
// opt_lenb, opt_len, static_lenb, static_len, stored_len,
// last_lit, last_dist));
if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
#ifdef FORCE_METHOD
if (level == 2 && buf) /* force stored block */
#else
if (stored_len+4 <= opt_lenb && buf) /* 4: two words for the lengths */
#endif
{
/* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
* Otherwise we can't have processed more than WSIZE input bytes since
* the last block flush, because compression would have been
* successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
* transform a block into a stored block.
*/
/* send block type */
send_bits((STORED_BLOCK<<1)+eof, 3);
compressed_len = (compressed_len + 3 + 7) & ~7L;
compressed_len += (stored_len + 4) << 3;
/* with header */
copy_block(buf, (unsigned)stored_len, 1);
}
#ifdef FORCE_METHOD
else if (level == 3) /* force static trees */
#else
else if (static_lenb == opt_lenb)
#endif
{
send_bits((STATIC_TREES<<1)+eof, 3);
compress_block(static_ltree,static_dtree);
compressed_len += 3 + static_len;
} else {
send_bits((DYN_TREES<<1)+eof, 3);
send_all_trees(l_desc.max_code+1, d_desc.max_code+1, max_blindex+1);
compress_block(dyn_ltree,dyn_dtree);
compressed_len += 3 + opt_len;
}
// assert (compressed_len == bits_sent);
init_block();
if (eof) {
// assert (input_len == isize);
bi_windup();
compressed_len += 7; /* align on byte boundary */
}
// Tracev((stderr,"\ncomprlen %lu(%lu) ", compressed_len>>3,
// compressed_len-7*eof));
return compressed_len >> 3;
}
/* Save the match info and tally the frequency counts.
Return true if the current block must be flushed. */
int CodeTree::ct_tally (int dist, int lc)
{
l_buf[last_lit++] = (byte)lc;
if (dist == 0) {
/* lc is the unmatched char */
dyn_ltree[lc].Freq++;
} else {
/* Here, lc is the match length - MIN_MATCH */
dist--; /* dist = match distance - 1 */
assert((word16)dist < (word16)MAX_DIST &&
(word16)lc <= (word16)(MAX_MATCH-MIN_MATCH) &&
(word16)d_code(dist) < (word16)D_CODES);
dyn_ltree[length_code[lc]+LITERALS+1].Freq++;
dyn_dtree[d_code(dist)].Freq++;
d_buf[last_dist++] = dist;
flags |= flag_bit;
}
flag_bit <<= 1;
/* Output the flags if they fill a byte: */
if ((last_lit & 7) == 0) {
flag_buf[last_flags++] = flags;
flags = 0, flag_bit = 1;
}
/* Try to guess if it is profitable to stop the current block here */
if (deflate_level > 2 && (last_lit & 0xfff) == 0) {
/* Compute an upper bound for the compressed length */
word32 out_length = (word32)last_lit*8L;
word32 in_length = (word32)strstart-block_start;
int dcode;
for (dcode = 0; dcode < D_CODES; dcode++) {
out_length += (word32)dyn_dtree[dcode].Freq*(5L+extra_dbits[dcode]);
}
out_length >>= 3;
// Trace((stderr,"\nlast_lit %u, last_dist %u, in %ld, out ~%ld(%ld%%) ",
// last_lit, last_dist, in_length, out_length,
// 100L - out_length*100L/in_length));
if (last_dist < last_lit/2 && out_length < in_length/2) return 1;
}
return (last_lit == LIT_BUFSIZE-1 || last_dist == (unsigned)DIST_BUFSIZE);
/* We avoid equality with LIT_BUFSIZE because of wraparound at 64K
* on 16 bit machines and because stored blocks are restricted to
* 64K-1 bytes. */
}
/* Send the block data compressed using the given Huffman trees */
void CodeTree::compress_block(ct_data *ltree, ct_data *dtree)
{
unsigned dist; /* distance of matched string */
int lc; /* match length or unmatched char (if dist == 0) */
unsigned lx = 0; /* running index in l_buf */
unsigned dx = 0; /* running index in d_buf */
unsigned fx = 0; /* running index in flag_buf */
byte flag = 0; /* current flags */
unsigned code; /* the code to send */
int extra; /* number of extra bits to send */
if (last_lit != 0)
do {
if ((lx & 7) == 0) flag = flag_buf[fx++];
lc = l_buf[lx++];
if ((flag & 1) == 0) {
/* send a literal byte */
send_code(lc, ltree);
// Tracecv(isgraph(lc), (stderr," '%c' ", lc));
} else {
/* Here, lc is the match length - MIN_MATCH */
code = length_code[lc];
/* send the length code */
send_code(code+LITERALS+1, ltree);
if ((extra = extra_lbits[code]) != 0) {
lc -= base_length[code];
/* send the extra length bits */
send_bits(lc, extra);
}
dist = d_buf[dx++];
/* Here, dist is the match distance - 1 */
code = d_code(dist);
assert(code < D_CODES);
/* send the distance code */
send_code(code, dtree);
if ((extra = extra_dbits[code]) != 0) {
dist -= base_dist[code];
/* send the extra distance bits */
send_bits(dist, extra);
}
} /* literal or match pair ? */
flag >>= 1;
} while (lx < last_lit);
send_code(END_BLOCK, ltree);
}
NAMESPACE_END
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -