⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 bch3.c

📁 一个纠错编码源代码,用c写的
💻 C
📖 第 1 页 / 共 2 页
字号:
 * by the generator polynomial g(x). */{	register int    i, j;	register int    feedback;	for (i = 0; i < length - k; i++)		bb[i] = 0;	for (i = k - 1; i >= 0; i--) {		feedback = data[i] ^ bb[length - k - 1];		if (feedback != 0) {			for (j = length - k - 1; j > 0; j--)				if (g[j] != 0)					bb[j] = bb[j - 1] ^ feedback;				else					bb[j] = bb[j - 1];			bb[0] = g[0] && feedback;		} else {			for (j = length - k - 1; j > 0; j--)				bb[j] = bb[j - 1];			bb[0] = 0;		}	}}void decode_bch()/* * Simon Rockliff's implementation of Berlekamp's algorithm. * * Assume we have received bits in recd[i], i=0..(n-1). * * Compute the 2*t syndromes by substituting alpha^i into rec(X) and * evaluating, storing the syndromes in s[i], i=1..2t (leave s[0] zero) . * Then we use the Berlekamp algorithm to find the error location polynomial * elp[i]. * * If the degree of the elp is >t, then we cannot correct all the errors, and * we have detected an uncorrectable error pattern. We output the information * bits uncorrected. * * If the degree of elp is <=t, we substitute alpha^i , i=1..n into the elp * to get the roots, hence the inverse roots, the error location numbers. * This step is usually called "Chien's search". * * If the number of errors located is not equal the degree of the elp, then * the decoder assumes that there are more than t errors and cannot correct * them, only detect them. We output the information bits uncorrected. */{	register int    i, j, u, q, t2, count = 0, syn_error = 0;	int             elp[1026][1024], d[1026], l[1026], u_lu[1026], s[1025];	int             root[200], loc[200], err[1024], reg[201];	t2 = 2 * t;	/* first form the syndromes */	printf("S(x) = ");	for (i = 1; i <= t2; i++) {		s[i] = 0;		for (j = 0; j < length; j++)			if (recd[j] != 0)				s[i] ^= alpha_to[(i * j) % n];		if (s[i] != 0)			syn_error = 1; /* set error flag if non-zero syndrome *//* * Note:    If the code is used only for ERROR DETECTION, then *          exit program here indicating the presence of errors. */		/* convert syndrome from polynomial form to index form  */		s[i] = index_of[s[i]];		printf("%3d ", s[i]);	}	printf("\n");	if (syn_error) {	/* if there are errors, try to correct them */		/*		 * Compute the error location polynomial via the Berlekamp		 * iterative algorithm. Following the terminology of Lin and		 * Costello's book :   d[u] is the 'mu'th discrepancy, where		 * u='mu'+1 and 'mu' (the Greek letter!) is the step number		 * ranging from -1 to 2*t (see L&C),  l[u] is the degree of		 * the elp at that step, and u_l[u] is the difference between		 * the step number and the degree of the elp. 		 */		/* initialise table entries */		d[0] = 0;			/* index form */		d[1] = s[1];		/* index form */		elp[0][0] = 0;		/* index form */		elp[1][0] = 1;		/* polynomial form */		for (i = 1; i < t2; i++) {			elp[0][i] = -1;	/* index form */			elp[1][i] = 0;	/* polynomial form */		}		l[0] = 0;		l[1] = 0;		u_lu[0] = -1;		u_lu[1] = 0;		u = 0; 		do {			u++;			if (d[u] == -1) {				l[u + 1] = l[u];				for (i = 0; i <= l[u]; i++) {					elp[u + 1][i] = elp[u][i];					elp[u][i] = index_of[elp[u][i]];				}			} else				/*				 * search for words with greatest u_lu[q] for				 * which d[q]!=0 				 */			{				q = u - 1;				while ((d[q] == -1) && (q > 0))					q--;				/* have found first non-zero d[q]  */				if (q > 0) {				  j = q;				  do {				    j--;				    if ((d[j] != -1) && (u_lu[q] < u_lu[j]))				      q = j;				  } while (j > 0);				} 				/*				 * have now found q such that d[u]!=0 and				 * u_lu[q] is maximum 				 */				/* store degree of new elp polynomial */				if (l[u] > l[q] + u - q)					l[u + 1] = l[u];				else					l[u + 1] = l[q] + u - q; 				/* form new elp(x) */				for (i = 0; i < t2; i++)					elp[u + 1][i] = 0;				for (i = 0; i <= l[q]; i++)					if (elp[q][i] != -1)						elp[u + 1][i + u - q] =                                    alpha_to[(d[u] + n - d[q] + elp[q][i]) % n];				for (i = 0; i <= l[u]; i++) {					elp[u + 1][i] ^= elp[u][i];					elp[u][i] = index_of[elp[u][i]];				}			}			u_lu[u + 1] = u - l[u + 1]; 			/* form (u+1)th discrepancy */			if (u < t2) {				/* no discrepancy computed on last iteration */			  if (s[u + 1] != -1)			    d[u + 1] = alpha_to[s[u + 1]];			  else			    d[u + 1] = 0;			    for (i = 1; i <= l[u + 1]; i++)			      if ((s[u + 1 - i] != -1) && (elp[u + 1][i] != 0))			        d[u + 1] ^= alpha_to[(s[u + 1 - i] 			                      + index_of[elp[u + 1][i]]) % n];			  /* put d[u+1] into index form */			  d[u + 1] = index_of[d[u + 1]];				}		} while ((u < t2) && (l[u + 1] <= t)); 		u++;		if (l[u] <= t) {/* Can correct errors */			/* put elp into index form */			for (i = 0; i <= l[u]; i++)				elp[u][i] = index_of[elp[u][i]];			printf("sigma(x) = ");			for (i = 0; i <= l[u]; i++)				printf("%3d ", elp[u][i]);			printf("\n");			printf("Roots: ");			/* Chien search: find roots of the error location polynomial */			for (i = 1; i <= l[u]; i++)				reg[i] = elp[u][i];			count = 0;			for (i = 1; i <= n; i++) {				q = 1;				for (j = 1; j <= l[u]; j++)					if (reg[j] != -1) {						reg[j] = (reg[j] + j) % n;						q ^= alpha_to[reg[j]];					}				if (!q) {	/* store root and error						 * location number indices */					root[count] = i;					loc[count] = n - i;					count++;					printf("%3d ", n - i);				}			}			printf("\n");			if (count == l[u])				/* no. roots = degree of elp hence <= t errors */				for (i = 0; i < l[u]; i++)					recd[loc[i]] ^= 1;			else	/* elp has degree >t hence cannot solve */				printf("Incomplete decoding: errors detected\n");		}	}}main(){	int             i;	read_p();               /* Read m */	generate_gf();          /* Construct the Galois Field GF(2**m) */	gen_poly();             /* Compute the generator polynomial of BCH code */	/* Randomly generate DATA */	seed = 131073;	srandom(seed);	for (i = 0; i < k; i++)		data[i] = ( random() & 65536 ) >> 16;	encode_bch();           /* encode data */	/*	 * recd[] are the coefficients of c(x) = x**(length-k)*data(x) + b(x)	 */	for (i = 0; i < length - k; i++)		recd[i] = bb[i];	for (i = 0; i < k; i++)		recd[i + length - k] = data[i];	printf("Code polynomial:\nc(x) = ");	for (i = 0; i < length; i++) {		printf("%1d", recd[i]);		if (i && ((i % 50) == 0))			printf("\n");	}	printf("\n");	printf("Enter the number of errors:\n");	scanf("%d", &numerr);	/* CHANNEL errors */    printf("Enter error locations (integers between");    printf(" 0 and %d): ", length-1);	/*	 * recd[] are the coefficients of r(x) = c(x) + e(x)	 */	for (i = 0; i < numerr; i++)		scanf("%d", &errpos[i]);	if (numerr)		for (i = 0; i < numerr; i++)			recd[errpos[i]] ^= 1;	printf("r(x) = ");	for (i = 0; i < length; i++) {		printf("%1d", recd[i]);		if (i && ((i % 50) == 0))			printf("\n");	}	printf("\n");	decode_bch();             /* DECODE received codeword recv[] */	/*	 * print out original and decoded data	 */	printf("Results:\n");	printf("original data  = ");	for (i = 0; i < k; i++) {		printf("%1d", data[i]);		if (i && ((i % 50) == 0))			printf("\n");	}	printf("\nrecovered data = ");	for (i = length - k; i < length; i++) {		printf("%1d", recd[i]);		if ((i-length+k) && (((i-length+k) % 50) == 0))			printf("\n");	}	printf("\n");	/*	 * DECODING ERRORS? we compare only the data portion	 */	for (i = length - k; i < length; i++)		if (data[i - length + k] != recd[i])			decerror++;	if (decerror)	   printf("There were %d decoding errors in message positions\n", decerror);	else	   printf("Succesful decoding\n");}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -