📄 bch3.c
字号:
* by the generator polynomial g(x). */{ register int i, j; register int feedback; for (i = 0; i < length - k; i++) bb[i] = 0; for (i = k - 1; i >= 0; i--) { feedback = data[i] ^ bb[length - k - 1]; if (feedback != 0) { for (j = length - k - 1; j > 0; j--) if (g[j] != 0) bb[j] = bb[j - 1] ^ feedback; else bb[j] = bb[j - 1]; bb[0] = g[0] && feedback; } else { for (j = length - k - 1; j > 0; j--) bb[j] = bb[j - 1]; bb[0] = 0; } }}void decode_bch()/* * Simon Rockliff's implementation of Berlekamp's algorithm. * * Assume we have received bits in recd[i], i=0..(n-1). * * Compute the 2*t syndromes by substituting alpha^i into rec(X) and * evaluating, storing the syndromes in s[i], i=1..2t (leave s[0] zero) . * Then we use the Berlekamp algorithm to find the error location polynomial * elp[i]. * * If the degree of the elp is >t, then we cannot correct all the errors, and * we have detected an uncorrectable error pattern. We output the information * bits uncorrected. * * If the degree of elp is <=t, we substitute alpha^i , i=1..n into the elp * to get the roots, hence the inverse roots, the error location numbers. * This step is usually called "Chien's search". * * If the number of errors located is not equal the degree of the elp, then * the decoder assumes that there are more than t errors and cannot correct * them, only detect them. We output the information bits uncorrected. */{ register int i, j, u, q, t2, count = 0, syn_error = 0; int elp[1026][1024], d[1026], l[1026], u_lu[1026], s[1025]; int root[200], loc[200], err[1024], reg[201]; t2 = 2 * t; /* first form the syndromes */ printf("S(x) = "); for (i = 1; i <= t2; i++) { s[i] = 0; for (j = 0; j < length; j++) if (recd[j] != 0) s[i] ^= alpha_to[(i * j) % n]; if (s[i] != 0) syn_error = 1; /* set error flag if non-zero syndrome *//* * Note: If the code is used only for ERROR DETECTION, then * exit program here indicating the presence of errors. */ /* convert syndrome from polynomial form to index form */ s[i] = index_of[s[i]]; printf("%3d ", s[i]); } printf("\n"); if (syn_error) { /* if there are errors, try to correct them */ /* * Compute the error location polynomial via the Berlekamp * iterative algorithm. Following the terminology of Lin and * Costello's book : d[u] is the 'mu'th discrepancy, where * u='mu'+1 and 'mu' (the Greek letter!) is the step number * ranging from -1 to 2*t (see L&C), l[u] is the degree of * the elp at that step, and u_l[u] is the difference between * the step number and the degree of the elp. */ /* initialise table entries */ d[0] = 0; /* index form */ d[1] = s[1]; /* index form */ elp[0][0] = 0; /* index form */ elp[1][0] = 1; /* polynomial form */ for (i = 1; i < t2; i++) { elp[0][i] = -1; /* index form */ elp[1][i] = 0; /* polynomial form */ } l[0] = 0; l[1] = 0; u_lu[0] = -1; u_lu[1] = 0; u = 0; do { u++; if (d[u] == -1) { l[u + 1] = l[u]; for (i = 0; i <= l[u]; i++) { elp[u + 1][i] = elp[u][i]; elp[u][i] = index_of[elp[u][i]]; } } else /* * search for words with greatest u_lu[q] for * which d[q]!=0 */ { q = u - 1; while ((d[q] == -1) && (q > 0)) q--; /* have found first non-zero d[q] */ if (q > 0) { j = q; do { j--; if ((d[j] != -1) && (u_lu[q] < u_lu[j])) q = j; } while (j > 0); } /* * have now found q such that d[u]!=0 and * u_lu[q] is maximum */ /* store degree of new elp polynomial */ if (l[u] > l[q] + u - q) l[u + 1] = l[u]; else l[u + 1] = l[q] + u - q; /* form new elp(x) */ for (i = 0; i < t2; i++) elp[u + 1][i] = 0; for (i = 0; i <= l[q]; i++) if (elp[q][i] != -1) elp[u + 1][i + u - q] = alpha_to[(d[u] + n - d[q] + elp[q][i]) % n]; for (i = 0; i <= l[u]; i++) { elp[u + 1][i] ^= elp[u][i]; elp[u][i] = index_of[elp[u][i]]; } } u_lu[u + 1] = u - l[u + 1]; /* form (u+1)th discrepancy */ if (u < t2) { /* no discrepancy computed on last iteration */ if (s[u + 1] != -1) d[u + 1] = alpha_to[s[u + 1]]; else d[u + 1] = 0; for (i = 1; i <= l[u + 1]; i++) if ((s[u + 1 - i] != -1) && (elp[u + 1][i] != 0)) d[u + 1] ^= alpha_to[(s[u + 1 - i] + index_of[elp[u + 1][i]]) % n]; /* put d[u+1] into index form */ d[u + 1] = index_of[d[u + 1]]; } } while ((u < t2) && (l[u + 1] <= t)); u++; if (l[u] <= t) {/* Can correct errors */ /* put elp into index form */ for (i = 0; i <= l[u]; i++) elp[u][i] = index_of[elp[u][i]]; printf("sigma(x) = "); for (i = 0; i <= l[u]; i++) printf("%3d ", elp[u][i]); printf("\n"); printf("Roots: "); /* Chien search: find roots of the error location polynomial */ for (i = 1; i <= l[u]; i++) reg[i] = elp[u][i]; count = 0; for (i = 1; i <= n; i++) { q = 1; for (j = 1; j <= l[u]; j++) if (reg[j] != -1) { reg[j] = (reg[j] + j) % n; q ^= alpha_to[reg[j]]; } if (!q) { /* store root and error * location number indices */ root[count] = i; loc[count] = n - i; count++; printf("%3d ", n - i); } } printf("\n"); if (count == l[u]) /* no. roots = degree of elp hence <= t errors */ for (i = 0; i < l[u]; i++) recd[loc[i]] ^= 1; else /* elp has degree >t hence cannot solve */ printf("Incomplete decoding: errors detected\n"); } }}main(){ int i; read_p(); /* Read m */ generate_gf(); /* Construct the Galois Field GF(2**m) */ gen_poly(); /* Compute the generator polynomial of BCH code */ /* Randomly generate DATA */ seed = 131073; srandom(seed); for (i = 0; i < k; i++) data[i] = ( random() & 65536 ) >> 16; encode_bch(); /* encode data */ /* * recd[] are the coefficients of c(x) = x**(length-k)*data(x) + b(x) */ for (i = 0; i < length - k; i++) recd[i] = bb[i]; for (i = 0; i < k; i++) recd[i + length - k] = data[i]; printf("Code polynomial:\nc(x) = "); for (i = 0; i < length; i++) { printf("%1d", recd[i]); if (i && ((i % 50) == 0)) printf("\n"); } printf("\n"); printf("Enter the number of errors:\n"); scanf("%d", &numerr); /* CHANNEL errors */ printf("Enter error locations (integers between"); printf(" 0 and %d): ", length-1); /* * recd[] are the coefficients of r(x) = c(x) + e(x) */ for (i = 0; i < numerr; i++) scanf("%d", &errpos[i]); if (numerr) for (i = 0; i < numerr; i++) recd[errpos[i]] ^= 1; printf("r(x) = "); for (i = 0; i < length; i++) { printf("%1d", recd[i]); if (i && ((i % 50) == 0)) printf("\n"); } printf("\n"); decode_bch(); /* DECODE received codeword recv[] */ /* * print out original and decoded data */ printf("Results:\n"); printf("original data = "); for (i = 0; i < k; i++) { printf("%1d", data[i]); if (i && ((i % 50) == 0)) printf("\n"); } printf("\nrecovered data = "); for (i = length - k; i < length; i++) { printf("%1d", recd[i]); if ((i-length+k) && (((i-length+k) % 50) == 0)) printf("\n"); } printf("\n"); /* * DECODING ERRORS? we compare only the data portion */ for (i = length - k; i < length; i++) if (data[i - length + k] != recd[i]) decerror++; if (decerror) printf("There were %d decoding errors in message positions\n", decerror); else printf("Succesful decoding\n");}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -