📄 threadpool.h
字号:
//
// ThreadPool.h
//
// $Id: //poco/Main/Foundation/include/Foundation/ThreadPool.h#5 $
//
// Definition of the ThreadPool class.
//
// Copyright (c) 2004, Guenter Obiltschnig/Applied Informatics.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Redistributions in any form must be accompanied by information on
// how to obtain complete source code for this software and any
// accompanying software that uses this software. The source code
// must either be included in the distribution or be available for no
// more than the cost of distribution plus a nominal fee, and must be
// freely redistributable under reasonable conditions. For an
// executable file, complete source code means the source code for all
// modules it contains. It does not include source code for modules or
// files that typically accompany the major components of the operating
// system on which the executable file runs.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
// BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
// ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
#ifndef Foundation_ThreadPool_INCLUDED
#define Foundation_ThreadPool_INCLUDED
#ifndef Foundation_Foundation_INCLUDED
#include "Foundation/Foundation.h"
#endif
#ifndef Foundation_Mutex_INCLUDED
#include "Foundation/Mutex.h"
#endif
#ifndef STD_VECTOR_INCLUDED
#include <vector>
#define STD_VECTOR_INCLUDED
#endif
Foundation_BEGIN
class Runnable;
class PooledThread;
class Foundation_API ThreadPool
/// A thread pool always keeps a number of threads running, ready
/// to accept work.
/// Creating and starting a threads can impose a significant runtime
/// overhead to an application. A thread pool helps to improve
/// the performance of an application by reducing the number
/// of threads that have to be created (and destroyed again).
/// Threads in a thread pool are re-used once they become
/// available again.
/// The thread pool always keeps a minimum number of threads
/// running. If the demans for threads increases, additional
/// threads are created. Once the demand for threads sinks
/// again, no-longer used threads are stopped and removed
/// from the pool.
{
public:
ThreadPool(int minCapacity = 2, int maxCapacity = 16, int idleTime = 60);
ThreadPool(const std::string& name, int minCapacity = 2, int maxCapacity = 16, int idleTime = 60);
/// Creates a thread pool with minCapacity threads.
/// If required, up to maxCapacity threads are created
/// a NoThreadAvailableException exception is thrown.
/// If a thread is running idle for more than idleTime seconds,
/// and more than minCapacity threads are running, the thread
/// is killed.
~ThreadPool();
/// Currently running threads will remain active
/// until they complete.
void addCapacity(int n);
/// Increases (or decreases, if n is negative)
/// the maximum number of threads.
int capacity() const;
/// Returns the maximum capacity of threads.
int used() const;
/// Returns the number of currently used threads.
int allocated() const;
/// Returns the number of currently allocated threads.
int available() const;
/// Returns the number available threads.
void start(Runnable& target);
/// Obtains a thread and starts the target.
/// Throws a NoThreadAvailableException if no more
/// threads are available.
void stopAll();
/// Stops all running threads.
/// Will also delete all thread objects.
/// If used, this method should be the last action before
/// the thread pool is deleted.
void joinAll();
/// Waits for all threads to complete.
void collect();
/// Stops and removes no longer used threads from the
/// thread pool. Can be called at various times in an
/// application's life time to help the thread pool
/// manage its threads. Calling this method is optional,
/// as the thread pool is also implicitly managed in
/// calls to start(), addCapacity() and waitAll().
static ThreadPool& defaultPool();
/// Returns a reference to the default
/// thread pool.
protected:
PooledThread* getThread();
PooledThread* createThread();
void housekeep();
private:
ThreadPool(const ThreadPool& pool);
ThreadPool& operator = (const ThreadPool& pool);
typedef std::vector<PooledThread*> ThreadVec;
std::string _name;
int _minCapacity;
int _maxCapacity;
int _idleTime;
int _serial;
ThreadVec _threads;
mutable FastMutex _mutex;
};
Foundation_END
#endif // Foundation_ThreadPool_INCLUDED
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -