📄 class_g_f2_n_p_p-members.html
字号:
<tr bgcolor="#f0f0f0"><td><b>InversionIsFast</b>() const (defined in <a class="el" href="class_abstract_group.html">AbstractGroup< EuclideanDomainOf< PolynomialMod2 >::Element ></a>)</td><td><a class="el" href="class_abstract_group.html">AbstractGroup< EuclideanDomainOf< PolynomialMod2 >::Element ></a></td><td><code> [inline, virtual]</code></td></tr> <tr bgcolor="#f0f0f0"><td><b>IsUnit</b>(const Element &a) const (defined in <a class="el" href="class_g_f2_n_p.html">GF2NP</a>)</td><td><a class="el" href="class_g_f2_n_p.html">GF2NP</a></td><td><code> [inline, virtual]</code></td></tr> <tr bgcolor="#f0f0f0"><td><b>m</b> (defined in <a class="el" href="class_g_f2_n_p.html">GF2NP</a>)</td><td><a class="el" href="class_g_f2_n_p.html">GF2NP</a></td><td><code> [protected]</code></td></tr> <tr bgcolor="#f0f0f0"><td><b>m_domain</b> (defined in <a class="el" href="class_quotient_ring.html">QuotientRing< EuclideanDomainOf< PolynomialMod2 > ></a>)</td><td><a class="el" href="class_quotient_ring.html">QuotientRing< EuclideanDomainOf< PolynomialMod2 > ></a></td><td><code> [protected]</code></td></tr> <tr bgcolor="#f0f0f0"><td><b>m_modulus</b> (defined in <a class="el" href="class_quotient_ring.html">QuotientRing< EuclideanDomainOf< PolynomialMod2 > ></a>)</td><td><a class="el" href="class_quotient_ring.html">QuotientRing< EuclideanDomainOf< PolynomialMod2 > ></a></td><td><code> [protected]</code></td></tr> <tr bgcolor="#f0f0f0"><td><b>MaxElementBitLength</b>() const (defined in <a class="el" href="class_g_f2_n_p.html">GF2NP</a>)</td><td><a class="el" href="class_g_f2_n_p.html">GF2NP</a></td><td><code> [inline]</code></td></tr> <tr bgcolor="#f0f0f0"><td><b>MaxElementByteLength</b>() const (defined in <a class="el" href="class_g_f2_n_p.html">GF2NP</a>)</td><td><a class="el" href="class_g_f2_n_p.html">GF2NP</a></td><td><code> [inline]</code></td></tr> <tr bgcolor="#f0f0f0"><td><b>MultiplicativeGroup</b>() const (defined in <a class="el" href="class_abstract_ring.html">AbstractRing< EuclideanDomainOf< PolynomialMod2 >::Element ></a>)</td><td><a class="el" href="class_abstract_ring.html">AbstractRing< EuclideanDomainOf< PolynomialMod2 >::Element ></a></td><td><code> [inline, virtual]</code></td></tr> <tr bgcolor="#f0f0f0"><td><b>MultiplicativeIdentity</b>() const (defined in <a class="el" href="class_quotient_ring.html">QuotientRing< EuclideanDomainOf< PolynomialMod2 > ></a>)</td><td><a class="el" href="class_quotient_ring.html">QuotientRing< EuclideanDomainOf< PolynomialMod2 > ></a></td><td><code> [inline, virtual]</code></td></tr> <tr bgcolor="#f0f0f0"><td><b>MultiplicativeInverse</b>(const Element &a) const (defined in <a class="el" href="class_quotient_ring.html">QuotientRing< EuclideanDomainOf< PolynomialMod2 > ></a>)</td><td><a class="el" href="class_quotient_ring.html">QuotientRing< EuclideanDomainOf< PolynomialMod2 > ></a></td><td><code> [virtual]</code></td></tr> <tr bgcolor="#f0f0f0"><td><b>Multiply</b>(const Element &a, const Element &b) const (defined in <a class="el" href="class_quotient_ring.html">QuotientRing< EuclideanDomainOf< PolynomialMod2 > ></a>)</td><td><a class="el" href="class_quotient_ring.html">QuotientRing< EuclideanDomainOf< PolynomialMod2 > ></a></td><td><code> [inline, virtual]</code></td></tr> <tr bgcolor="#f0f0f0"><td><b>operator=</b>(const AbstractRing &source) (defined in <a class="el" href="class_abstract_ring.html">AbstractRing< EuclideanDomainOf< PolynomialMod2 >::Element ></a>)</td><td><a class="el" href="class_abstract_ring.html">AbstractRing< EuclideanDomainOf< PolynomialMod2 >::Element ></a></td><td><code> [inline]</code></td></tr> <tr bgcolor="#f0f0f0"><td><b>operator==</b>(const QuotientRing< EuclideanDomainOf< PolynomialMod2 > > &rhs) const (defined in <a class="el" href="class_quotient_ring.html">QuotientRing< EuclideanDomainOf< PolynomialMod2 > ></a>)</td><td><a class="el" href="class_quotient_ring.html">QuotientRing< EuclideanDomainOf< PolynomialMod2 > ></a></td><td><code> [inline]</code></td></tr> <tr bgcolor="#f0f0f0"><td><b>QuotientRing</b>(const EuclideanDomain &domain, const Element &modulus) (defined in <a class="el" href="class_quotient_ring.html">QuotientRing< EuclideanDomainOf< PolynomialMod2 > ></a>)</td><td><a class="el" href="class_quotient_ring.html">QuotientRing< EuclideanDomainOf< PolynomialMod2 > ></a></td><td><code> [inline]</code></td></tr> <tr bgcolor="#f0f0f0"><td><b>Reduce</b>(Element &a, const Element &b) const (defined in <a class="el" href="class_quotient_ring.html">QuotientRing< EuclideanDomainOf< PolynomialMod2 > ></a>)</td><td><a class="el" href="class_quotient_ring.html">QuotientRing< EuclideanDomainOf< PolynomialMod2 > ></a></td><td><code> [inline, virtual]</code></td></tr> <tr bgcolor="#f0f0f0"><td><b>ScalarMultiply</b>(const Element &a, const Integer &e) const (defined in <a class="el" href="class_abstract_group.html">AbstractGroup< EuclideanDomainOf< PolynomialMod2 >::Element ></a>)</td><td><a class="el" href="class_abstract_group.html">AbstractGroup< EuclideanDomainOf< PolynomialMod2 >::Element ></a></td><td><code> [virtual]</code></td></tr> <tr bgcolor="#f0f0f0"><td><b>SimultaneousExponentiate</b>(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const (defined in <a class="el" href="class_abstract_ring.html">AbstractRing< EuclideanDomainOf< PolynomialMod2 >::Element ></a>)</td><td><a class="el" href="class_abstract_ring.html">AbstractRing< EuclideanDomainOf< PolynomialMod2 >::Element ></a></td><td><code> [virtual]</code></td></tr> <tr bgcolor="#f0f0f0"><td><b>SimultaneousMultiply</b>(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const (defined in <a class="el" href="class_abstract_group.html">AbstractGroup< EuclideanDomainOf< PolynomialMod2 >::Element ></a>)</td><td><a class="el" href="class_abstract_group.html">AbstractGroup< EuclideanDomainOf< PolynomialMod2 >::Element ></a></td><td><code> [virtual]</code></td></tr> <tr bgcolor="#f0f0f0"><td><b>SolveQuadraticEquation</b>(const Element &a) const (defined in <a class="el" href="class_g_f2_n_p.html">GF2NP</a>)</td><td><a class="el" href="class_g_f2_n_p.html">GF2NP</a></td><td></td></tr> <tr bgcolor="#f0f0f0"><td><b>Square</b>(const Element &a) const (defined in <a class="el" href="class_quotient_ring.html">QuotientRing< EuclideanDomainOf< PolynomialMod2 > ></a>)</td><td><a class="el" href="class_quotient_ring.html">QuotientRing< EuclideanDomainOf< PolynomialMod2 > ></a></td><td><code> [inline, virtual]</code></td></tr> <tr bgcolor="#f0f0f0"><td><b>SquareRoot</b>(const Element &a) const (defined in <a class="el" href="class_g_f2_n_p.html">GF2NP</a>)</td><td><a class="el" href="class_g_f2_n_p.html">GF2NP</a></td><td></td></tr> <tr bgcolor="#f0f0f0"><td><b>Subtract</b>(const Element &a, const Element &b) const (defined in <a class="el" href="class_quotient_ring.html">QuotientRing< EuclideanDomainOf< PolynomialMod2 > ></a>)</td><td><a class="el" href="class_quotient_ring.html">QuotientRing< EuclideanDomainOf< PolynomialMod2 > ></a></td><td><code> [inline, virtual]</code></td></tr> <tr bgcolor="#f0f0f0"><td><b>~AbstractGroup</b>() (defined in <a class="el" href="class_abstract_group.html">AbstractGroup< EuclideanDomainOf< PolynomialMod2 >::Element ></a>)</td><td><a class="el" href="class_abstract_group.html">AbstractGroup< EuclideanDomainOf< PolynomialMod2 >::Element ></a></td><td><code> [inline, virtual]</code></td></tr></table><hr size="1"><address style="align: right;"><small>Generated on Tue Jul 8 23:35:01 2003 for Crypto++ by<a href="http://www.doxygen.org/index.html"><img src="doxygen.png" alt="doxygen" align="middle" border=0 > </a>1.3.2 </small></address></body></html>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -