⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 mm.h

📁 GNU Hurd 源代码
💻 H
字号:
#ifndef _LINUX_MM_H#define _LINUX_MM_H#include <linux/sched.h>#include <linux/errno.h>#ifdef __KERNEL__#include <linux/string.h>extern unsigned long max_mapnr;extern unsigned long num_physpages;extern void * high_memory;extern int page_cluster;#include <asm/page.h>#include <asm/atomic.h>/* * Linux kernel virtual memory manager primitives. * The idea being to have a "virtual" mm in the same way * we have a virtual fs - giving a cleaner interface to the * mm details, and allowing different kinds of memory mappings * (from shared memory to executable loading to arbitrary * mmap() functions). *//* * This struct defines a memory VMM memory area. There is one of these * per VM-area/task.  A VM area is any part of the process virtual memory * space that has a special rule for the page-fault handlers (ie a shared * library, the executable area etc). */struct vm_area_struct {	struct mm_struct * vm_mm;	/* VM area parameters */	unsigned long vm_start;	unsigned long vm_end;	/* linked list of VM areas per task, sorted by address */	struct vm_area_struct *vm_next;	pgprot_t vm_page_prot;	unsigned short vm_flags;	/* AVL tree of VM areas per task, sorted by address */	short vm_avl_height;	struct vm_area_struct * vm_avl_left;	struct vm_area_struct * vm_avl_right;	/* For areas with inode, the list inode->i_mmap, for shm areas,	 * the list of attaches, otherwise unused.	 */	struct vm_area_struct *vm_next_share;	struct vm_area_struct **vm_pprev_share;	struct vm_operations_struct * vm_ops;	unsigned long vm_offset;	struct file * vm_file;	unsigned long vm_pte;			/* shared mem */};/* * vm_flags.. */#define VM_READ		0x0001	/* currently active flags */#define VM_WRITE	0x0002#define VM_EXEC		0x0004#define VM_SHARED	0x0008#define VM_MAYREAD	0x0010	/* limits for mprotect() etc */#define VM_MAYWRITE	0x0020#define VM_MAYEXEC	0x0040#define VM_MAYSHARE	0x0080#define VM_GROWSDOWN	0x0100	/* general info on the segment */#define VM_GROWSUP	0x0200#define VM_SHM		0x0400	/* shared memory area, don't swap out */#define VM_DENYWRITE	0x0800	/* ETXTBSY on write attempts.. */#define VM_EXECUTABLE	0x1000#define VM_LOCKED	0x2000#define VM_IO           0x4000  /* Memory mapped I/O or similar */#define VM_STACK_FLAGS	0x0177/* * mapping from the currently active vm_flags protection bits (the * low four bits) to a page protection mask.. */extern pgprot_t protection_map[16];/* * These are the virtual MM functions - opening of an area, closing and * unmapping it (needed to keep files on disk up-to-date etc), pointer * to the functions called when a no-page or a wp-page exception occurs.  */struct vm_operations_struct {	void (*open)(struct vm_area_struct * area);	void (*close)(struct vm_area_struct * area);	void (*unmap)(struct vm_area_struct *area, unsigned long, size_t);	void (*protect)(struct vm_area_struct *area, unsigned long, size_t, unsigned int newprot);	int (*sync)(struct vm_area_struct *area, unsigned long, size_t, unsigned int flags);	void (*advise)(struct vm_area_struct *area, unsigned long, size_t, unsigned int advise);	unsigned long (*nopage)(struct vm_area_struct * area, unsigned long address, int write_access);	unsigned long (*wppage)(struct vm_area_struct * area, unsigned long address,		unsigned long page);	int (*swapout)(struct vm_area_struct *, struct page *);	pte_t (*swapin)(struct vm_area_struct *, unsigned long, unsigned long);};/* * Try to keep the most commonly accessed fields in single cache lines * here (16 bytes or greater).  This ordering should be particularly * beneficial on 32-bit processors. * * The first line is data used in page cache lookup, the second line * is used for linear searches (eg. clock algorithm scans).  */typedef struct page {	/* these must be first (free area handling) */	struct page *next;	struct page *prev;	struct inode *inode;	unsigned long offset;	struct page *next_hash;	atomic_t count;	unsigned long flags;	/* atomic flags, some possibly updated asynchronously */	struct wait_queue *wait;	struct page **pprev_hash;	struct buffer_head * buffers;} mem_map_t;/* Page flag bit values */#define PG_locked		 0#define PG_error		 1#define PG_referenced		 2#define PG_dirty		 3#define PG_uptodate		 4#define PG_free_after		 5#define PG_decr_after		 6#define PG_swap_unlock_after	 7#define PG_DMA			 8#define PG_Slab			 9#define PG_swap_cache		10#define PG_skip			11#define PG_reserved		31/* Make it prettier to test the above... */#define PageLocked(page)	(test_bit(PG_locked, &(page)->flags))#define PageError(page)		(test_bit(PG_error, &(page)->flags))#define PageReferenced(page)	(test_bit(PG_referenced, &(page)->flags))#define PageDirty(page)		(test_bit(PG_dirty, &(page)->flags))#define PageUptodate(page)	(test_bit(PG_uptodate, &(page)->flags))#define PageFreeAfter(page)	(test_bit(PG_free_after, &(page)->flags))#define PageDecrAfter(page)	(test_bit(PG_decr_after, &(page)->flags))#define PageSwapUnlockAfter(page) (test_bit(PG_swap_unlock_after, &(page)->flags))#define PageDMA(page)		(test_bit(PG_DMA, &(page)->flags))#define PageSlab(page)		(test_bit(PG_Slab, &(page)->flags))#define PageSwapCache(page)	(test_bit(PG_swap_cache, &(page)->flags))#define PageReserved(page)	(test_bit(PG_reserved, &(page)->flags))#define PageSetSlab(page)	(set_bit(PG_Slab, &(page)->flags))#define PageSetSwapCache(page)	(set_bit(PG_swap_cache, &(page)->flags))#define PageTestandSetDirty(page)	\			(test_and_set_bit(PG_dirty, &(page)->flags))#define PageTestandSetSwapCache(page)	\			(test_and_set_bit(PG_swap_cache, &(page)->flags))#define PageClearSlab(page)	(clear_bit(PG_Slab, &(page)->flags))#define PageClearSwapCache(page)(clear_bit(PG_swap_cache, &(page)->flags))#define PageTestandClearDirty(page) \			(test_and_clear_bit(PG_dirty, &(page)->flags))#define PageTestandClearSwapCache(page)	\			(test_and_clear_bit(PG_swap_cache, &(page)->flags))/* * Various page->flags bits: * * PG_reserved is set for a page which must never be accessed (which * may not even be present). * * PG_DMA is set for those pages which lie in the range of * physical addresses capable of carrying DMA transfers. * * Multiple processes may "see" the same page. E.g. for untouched * mappings of /dev/null, all processes see the same page full of * zeroes, and text pages of executables and shared libraries have * only one copy in memory, at most, normally. * * For the non-reserved pages, page->count denotes a reference count. *   page->count == 0 means the page is free. *   page->count == 1 means the page is used for exactly one purpose *   (e.g. a private data page of one process). * * A page may be used for kmalloc() or anyone else who does a * get_free_page(). In this case the page->count is at least 1, and * all other fields are unused but should be 0 or NULL. The * management of this page is the responsibility of the one who uses * it. * * The other pages (we may call them "process pages") are completely * managed by the Linux memory manager: I/O, buffers, swapping etc. * The following discussion applies only to them. * * A page may belong to an inode's memory mapping. In this case, * page->inode is the pointer to the inode, and page->offset is the * file offset of the page (not necessarily a multiple of PAGE_SIZE). * * A page may have buffers allocated to it. In this case, * page->buffers is a circular list of these buffer heads. Else, * page->buffers == NULL. * * For pages belonging to inodes, the page->count is the number of * attaches, plus 1 if buffers are allocated to the page. * * All pages belonging to an inode make up a doubly linked list * inode->i_pages, using the fields page->next and page->prev. (These * fields are also used for freelist management when page->count==0.) * There is also a hash table mapping (inode,offset) to the page * in memory if present. The lists for this hash table use the fields * page->next_hash and page->pprev_hash. * * All process pages can do I/O: * - inode pages may need to be read from disk, * - inode pages which have been modified and are MAP_SHARED may need *   to be written to disk, * - private pages which have been modified may need to be swapped out *   to swap space and (later) to be read back into memory. * During disk I/O, PG_locked is used. This bit is set before I/O * and reset when I/O completes. page->wait is a wait queue of all * tasks waiting for the I/O on this page to complete. * PG_uptodate tells whether the page's contents is valid. * When a read completes, the page becomes uptodate, unless a disk I/O * error happened. * When a write completes, and PG_free_after is set, the page is * freed without any further delay. * * For choosing which pages to swap out, inode pages carry a * PG_referenced bit, which is set any time the system accesses * that page through the (inode,offset) hash table. * * PG_skip is used on sparc/sparc64 architectures to "skip" certain * parts of the address space. * * PG_error is set to indicate that an I/O error occurred on this page. */extern mem_map_t * mem_map;/* * This is timing-critical - most of the time in getting a new page * goes to clearing the page. If you want a page without the clearing * overhead, just use __get_free_page() directly.. */#define __get_free_page(gfp_mask) __get_free_pages((gfp_mask),0)#define __get_dma_pages(gfp_mask, order) __get_free_pages((gfp_mask) | GFP_DMA,(order))extern unsigned long FASTCALL(__get_free_pages(int gfp_mask, unsigned long gfp_order));extern inline unsigned long get_free_page(int gfp_mask){	unsigned long page;	page = __get_free_page(gfp_mask);	if (page)		clear_page(page);	return page;}extern int low_on_memory;/* memory.c & swap.c*/#define free_page(addr) free_pages((addr),0)extern void FASTCALL(free_pages(unsigned long addr, unsigned long order));extern void FASTCALL(__free_page(struct page *));extern void show_free_areas(void);extern unsigned long put_dirty_page(struct task_struct * tsk,unsigned long page,	unsigned long address);extern void free_page_tables(struct mm_struct * mm);extern void clear_page_tables(struct mm_struct *, unsigned long, int);extern int new_page_tables(struct task_struct * tsk);extern void zap_page_range(struct mm_struct *mm, unsigned long address, unsigned long size);extern int copy_page_range(struct mm_struct *dst, struct mm_struct *src, struct vm_area_struct *vma);extern int remap_page_range(unsigned long from, unsigned long to, unsigned long size, pgprot_t prot);extern int zeromap_page_range(unsigned long from, unsigned long size, pgprot_t prot);extern void vmtruncate(struct inode * inode, unsigned long offset);extern int handle_mm_fault(struct task_struct *tsk,struct vm_area_struct *vma, unsigned long address, int write_access);extern int make_pages_present(unsigned long addr, unsigned long end);extern int pgt_cache_water[2];extern int check_pgt_cache(void);extern unsigned long paging_init(unsigned long start_mem, unsigned long end_mem);extern void mem_init(unsigned long start_mem, unsigned long end_mem);extern void show_mem(void);extern void si_meminfo(struct sysinfo * val);/* mmap.c */extern void vma_init(void);extern void merge_segments(struct mm_struct *, unsigned long, unsigned long);extern void insert_vm_struct(struct mm_struct *, struct vm_area_struct *);extern void build_mmap_avl(struct mm_struct *);extern void exit_mmap(struct mm_struct *);extern unsigned long get_unmapped_area(unsigned long, unsigned long);extern unsigned long do_mmap(struct file *, unsigned long, unsigned long,	unsigned long, unsigned long, unsigned long);extern int do_munmap(unsigned long, size_t);/* filemap.c */extern void remove_inode_page(struct page *);extern unsigned long page_unuse(struct page *);extern int shrink_mmap(int, int);extern void truncate_inode_pages(struct inode *, unsigned long);extern unsigned long get_cached_page(struct inode *, unsigned long, int);extern void put_cached_page(unsigned long);/* * GFP bitmasks.. */#define __GFP_WAIT	0x01#define __GFP_LOW	0x02#define __GFP_MED	0x04#define __GFP_HIGH	0x08#define __GFP_IO	0x10#define __GFP_SWAP	0x20#define __GFP_DMA	0x80#define GFP_BUFFER	(__GFP_LOW | __GFP_WAIT)#define GFP_ATOMIC	(__GFP_HIGH)#define GFP_USER	(__GFP_LOW | __GFP_WAIT | __GFP_IO)#define GFP_KERNEL	(__GFP_MED | __GFP_WAIT | __GFP_IO)#define GFP_NFS		(__GFP_HIGH | __GFP_WAIT | __GFP_IO)#define GFP_KSWAPD	(__GFP_IO | __GFP_SWAP)/* Flag - indicates that the buffer will be suitable for DMA.  Ignored on some   platforms, used as appropriate on others */#define GFP_DMA		__GFP_DMA/* vma is the first one with  address < vma->vm_end, * and even  address < vma->vm_start. Have to extend vma. */static inline int expand_stack(struct vm_area_struct * vma, unsigned long address){	unsigned long grow;	address &= PAGE_MASK;	grow = vma->vm_start - address;	if ((vma->vm_end - address	    > current->rlim[RLIMIT_STACK].rlim_cur) ||	    ((current->rlim[RLIMIT_AS].rlim_cur < RLIM_INFINITY) &&	    ((vma->vm_mm->total_vm << PAGE_SHIFT) + grow	    > current->rlim[RLIMIT_AS].rlim_cur)))		return -ENOMEM;	vma->vm_start = address;	vma->vm_offset -= grow;	vma->vm_mm->total_vm += grow >> PAGE_SHIFT;	if (vma->vm_flags & VM_LOCKED)		vma->vm_mm->locked_vm += grow >> PAGE_SHIFT;	return 0;}/* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);/* Look up the first VMA which intersects the interval start_addr..end_addr-1,   NULL if none.  Assume start_addr < end_addr. */static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr){	struct vm_area_struct * vma = find_vma(mm,start_addr);	if (vma && end_addr <= vma->vm_start)		vma = NULL;	return vma;}#define buffer_under_min()	((buffermem >> PAGE_SHIFT) * 100 < \				buffer_mem.min_percent * num_physpages)#define pgcache_under_min()	(page_cache_size * 100 < \				page_cache.min_percent * num_physpages)#endif /* __KERNEL__ */#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -