📄 fpica.m
字号:
Xsub=X(:, getSamples(numSamples, sampleSize)); B = (Xsub * (( Xsub' * B) .^ 3)) / size(Xsub,2) - 3 * B; case 13 % Optimoitu Ysub=X(:, getSamples(numSamples, sampleSize))' * B; Gpow3 = Ysub .^ 3; Beta = sum(Ysub .* Gpow3); D = diag(1 ./ (Beta - 3 * size(Ysub', 2))); B = B + myy * B * (Ysub' * Gpow3 - diag(Beta)) * D; % tanh case 20 hypTan = tanh(a1 * X' * B); B = X * hypTan / numSamples - ... ones(size(B,1),1) * sum(1 - hypTan .^ 2) .* B / numSamples * ... a1; case 21 % optimoitu - epsilonin kokoisia Y = X' * B; hypTan = tanh(a1 * Y); Beta = sum(Y .* hypTan); D = diag(1 ./ (Beta - a1 * sum(1 - hypTan .^ 2))); B = B + myy * B * (Y' * hypTan - diag(Beta)) * D; case 22 Xsub=X(:, getSamples(numSamples, sampleSize)); hypTan = tanh(a1 * Xsub' * B); B = Xsub * hypTan / size(Xsub, 2) - ... ones(size(B,1),1) * sum(1 - hypTan .^ 2) .* B / size(Xsub, 2) * a1; case 23 % Optimoitu Y = X(:, getSamples(numSamples, sampleSize))' * B; hypTan = tanh(a1 * Y); Beta = sum(Y .* hypTan); D = diag(1 ./ (Beta - a1 * sum(1 - hypTan .^ 2))); B = B + myy * B * (Y' * hypTan - diag(Beta)) * D; % gauss case 30 U = X' * B; Usquared=U .^ 2; ex = exp(-a2 * Usquared / 2); gauss = U .* ex; dGauss = (1 - a2 * Usquared) .*ex; B = X * gauss / numSamples - ... ones(size(B,1),1) * sum(dGauss)... .* B / numSamples ; case 31 % optimoitu Y = X' * B; ex = exp(-a2 * (Y .^ 2) / 2); gauss = Y .* ex; Beta = sum(Y .* gauss); D = diag(1 ./ (Beta - sum((1 - a2 * (Y .^ 2)) .* ex))); B = B + myy * B * (Y' * gauss - diag(Beta)) * D; case 32 Xsub=X(:, getSamples(numSamples, sampleSize)); U = Xsub' * B; Usquared=U .^ 2; ex = exp(-a2 * Usquared / 2); gauss = U .* ex; dGauss = (1 - a2 * Usquared) .*ex; B = Xsub * gauss / size(Xsub,2) - ... ones(size(B,1),1) * sum(dGauss)... .* B / size(Xsub,2) ; case 33 % Optimoitu Y = X(:, getSamples(numSamples, sampleSize))' * B; ex = exp(-a2 * (Y .^ 2) / 2); gauss = Y .* ex; Beta = sum(Y .* gauss); D = diag(1 ./ (Beta - sum((1 - a2 * (Y .^ 2)) .* ex))); B = B + myy * B * (Y' * gauss - diag(Beta)) * D; % skew case 40 B = (X * ((X' * B) .^ 2)) / numSamples; case 41 % Optimoitu Y = X' * B; Gskew = Y .^ 2; Beta = sum(Y .* Gskew); D = diag(1 ./ (Beta)); B = B + myy * B * (Y' * Gskew - diag(Beta)) * D; case 42 Xsub=X(:, getSamples(numSamples, sampleSize)); B = (Xsub * ((Xsub' * B) .^ 2)) / size(Xsub,2); case 43 % Uusi optimoitu Y = X(:, getSamples(numSamples, sampleSize))' * B; Gskew = Y .^ 2; Beta = sum(Y .* Gskew); D = diag(1 ./ (Beta)); B = B + myy * B * (Y' * Gskew - diag(Beta)) * D; otherwise error('Code for desired nonlinearity not found!'); end end % Calculate ICA filters. W = B' * whiteningMatrix; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Also plot the last one... switch usedDisplay case 1 % There was and may still be other displaymodes... % 1D signals icaplot('dispsig',(X'*B)'); drawnow; case 2 % ... and now there are :-) % 1D basis icaplot('dispsig',A'); drawnow; case 3 % ... and now there are :-) % 1D filters icaplot('dispsig',W); drawnow; otherwise endend%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% DEFLATION APPROACHif approachMode == 2 B = zeros(vectorSize); % The search for a basis vector is repeated numOfIC times. round = 1; numFailures = 0; while round <= numOfIC, myy = myyOrig; usedNlinearity = gOrig; stroke = 0; notFine = 1; long = 0; endFinetuning = 0; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Show the progress... if b_verbose, fprintf('IC %d ', round); end % Take a random initial vector of lenght 1 and orthogonalize it % with respect to the other vectors. if initialStateMode == 0 w = rand(vectorSize, 1) - .5; elseif initialStateMode == 1 w=whiteningMatrix*guess(:,round); end w = w - B * B' * w; w = w / norm(w); wOld = zeros(size(w)); wOld2 = zeros(size(w)); % This is the actual fixed-point iteration loop. % for i = 1 : maxNumIterations + 1 i = 1; gabba = 1; while i <= maxNumIterations + gabba if (usedDisplay > 0) drawnow; end if (interruptible & g_FastICA_interrupt) if b_verbose fprintf('\n\nCalculation interrupted by the user\n'); end return; end % Project the vector into the space orthogonal to the space % spanned by the earlier found basis vectors. Note that we can do % the projection with matrix B, since the zero entries do not % contribute to the projection. w = w - B * B' * w; w = w / norm(w); if notFine if i == maxNumIterations + 1 if b_verbose fprintf('\nComponent number %d did not converge in %d iterations.\n', round, maxNumIterations); end round = round - 1; numFailures = numFailures + 1; if numFailures > failureLimit if b_verbose fprintf('Too many failures to converge (%d). Giving up.\n', numFailures); end if round == 0 A=[]; W=[]; end return; end % numFailures > failurelimit break; end % i == maxNumIterations + 1 else % if notFine if i >= endFinetuning wOld = w; % So the algorithm will stop on the next test... end end % if notFine %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Show the progress... if b_verbose, fprintf('.'); end; % Test for termination condition. Note that the algorithm has % converged if the direction of w and wOld is the same, this % is why we test the two cases. if norm(w - wOld) < epsilon | norm(w + wOld) < epsilon if finetuningEnabled & notFine if b_verbose, fprintf('Initial convergence, fine-tuning: '); end; notFine = 0; gabba = maxFinetune; wOld = zeros(size(w)); wOld2 = zeros(size(w)); usedNlinearity = gFine; myy = myyK * myyOrig; endFinetuning = maxFinetune + i; else numFailures = 0; % Save the vector B(:, round) = w; % Calculate the de-whitened vector. A(:,round) = dewhiteningMatrix * w; % Calculate ICA filter. W(round,:) = w' * whiteningMatrix; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Show the progress... if b_verbose, fprintf('computed ( %d steps ) \n', i); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Also plot the current state... switch usedDisplay case 1 if rem(round, displayInterval) == 0, % There was and may still be other displaymodes... % 1D signals temp = X'*B; icaplot('dispsig',temp(:,1:numOfIC)'); drawnow; end case 2 if rem(round, displayInterval) == 0, % ... and now there are :-) % 1D basis icaplot('dispsig',A'); drawnow; end case 3 if rem(round, displayInterval) == 0, % ... and now there are :-) % 1D filters icaplot('dispsig',W); drawnow; end end % switch usedDisplay break; % IC ready - next... end %if finetuningEnabled & notFine elseif stabilizationEnabled if (~stroke) & (norm(w - wOld2) < epsilon | norm(w + wOld2) < ... epsilon) stroke = myy; if b_verbose, fprintf('Stroke!'); end; myy = .5*myy; if mod(usedNlinearity,2) == 0 usedNlinearity = usedNlinearity + 1; end elseif stroke myy = stroke; stroke = 0; if (myy == 1) & (mod(usedNlinearity,2) ~= 0) usedNlinearity = usedNlinearity - 1; end elseif (notFine) & (~long) & (i > maxNumIterations / 2) if b_verbose, fprintf('Taking long (reducing step size) '); end; long = 1; myy = .5*myy; if mod(usedNlinearity,2) == 0 usedNlinearity = usedNlinearity + 1; end end end wOld2 = wOld; wOld = w; switch usedNlinearity % pow3 case 10 w = (X * ((X' * w) .^ 3)) / numSamples - 3 * w; case 11 EXGpow3 = (X * ((X' * w) .^ 3)) / numSamples; Beta = w' * EXGpow3; w = w - myy * (EXGpow3 - Beta * w) / (3 - Beta); case 12 Xsub=X(:,getSamples(numSamples, sampleSize)); w = (Xsub * ((Xsub' * w) .^ 3)) / size(Xsub, 2) - 3 * w; case 13 Xsub=X(:,getSamples(numSamples, sampleSize)); EXGpow3 = (Xsub * ((Xsub' * w) .^ 3)) / size(Xsub, 2); Beta = w' * EXGpow3; w = w - myy * (EXGpow3 - Beta * w) / (3 - Beta); % tanh case 20 hypTan = tanh(a1 * X' * w); w = (X * hypTan - a1 * sum(1 - hypTan .^ 2)' * w) / numSamples; case 21 hypTan = tanh(a1 * X' * w); Beta = w' * X * hypTan; w = w - myy * ((X * hypTan - Beta * w) / ... (a1 * sum((1-hypTan .^2)') - Beta)); case 22 Xsub=X(:,getSamples(numSamples, sampleSize)); hypTan = tanh(a1 * Xsub' * w); w = (Xsub * hypTan - a1 * sum(1 - hypTan .^ 2)' * w) / size(Xsub, 2); case 23 Xsub=X(:,getSamples(numSamples, sampleSize)); hypTan = tanh(a1 * Xsub' * w); Beta = w' * Xsub * hypTan; w = w - myy * ((Xsub * hypTan - Beta * w) / ... (a1 * sum((1-hypTan .^2)') - Beta)); % gauss case 30 % This has been split for performance reasons. u = X' * w; u2=u.^2; ex=exp(-a2 * u2/2); gauss = u.*ex; dGauss = (1 - a2 * u2) .*ex; w = (X * gauss - sum(dGauss)' * w) / numSamples; case 31 u = X' * w; u2=u.^2; ex=exp(-a2 * u2/2); gauss = u.*ex; dGauss = (1 - a2 * u2) .*ex; Beta = w' * X * gauss; w = w - myy * ((X * gauss - Beta * w) / ... (sum(dGauss)' - Beta)); case 32 Xsub=X(:,getSamples(numSamples, sampleSize)); u = Xsub' * w; u2=u.^2; ex=exp(-a2 * u2/2); gauss = u.*ex; dGauss = (1 - a2 * u2) .*ex; w = (Xsub * gauss - sum(dGauss)' * w) / size(Xsub, 2); case 33 Xsub=X(:,getSamples(numSamples, sampleSize)); u = Xsub' * w; u2=u.^2; ex=exp(-a2 * u2/2); gauss = u.*ex; dGauss = (1 - a2 * u2) .*ex; Beta = w' * Xsub * gauss; w = w - myy * ((Xsub * gauss - Beta * w) / ... (sum(dGauss)' - Beta)); % skew case 40 w = (X * ((X' * w) .^ 2)) / numSamples; case 41 EXGskew = (X * ((X' * w) .^ 2)) / numSamples; Beta = w' * EXGskew; w = w - myy * (EXGskew - Beta*w)/(-Beta); case 42 Xsub=X(:,getSamples(numSamples, sampleSize)); w = (Xsub * ((Xsub' * w) .^ 2)) / size(Xsub, 2); case 43 Xsub=X(:,getSamples(numSamples, sampleSize)); EXGskew = (Xsub * ((Xsub' * w) .^ 2)) / size(Xsub, 2); Beta = w' * EXGskew; w = w - myy * (EXGskew - Beta*w)/(-Beta); otherwise error('Code for desired nonlinearity not found!'); end % Normalize the new w. w = w / norm(w); i = i + 1; end round = round + 1; end if b_verbose, fprintf('Done.\n'); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Also plot the ones that may not have been plotted. if (usedDisplay > 0) & (rem(round-1, displayInterval) ~= 0) switch usedDisplay case 1 % There was and may still be other displaymodes... % 1D signals temp = X'*B; icaplot('dispsig',temp(:,1:numOfIC)'); drawnow; case 2 % ... and now there are :-) % 1D basis icaplot('dispsig',A'); drawnow; case 3 % ... and now there are :-) % 1D filters icaplot('dispsig',W); drawnow; otherwise end endend%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% In the end let's check the data for some securityif ~isreal(A) if b_verbose, fprintf('Warning: removing the imaginary part from the result.\n'); end A = real(A); W = real(W);end%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Subfunction% Calculates tanh simplier and faster than Matlab tanh.function y=tanh(x)y = 1 - 2 ./ (exp(2 * x) + 1);%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%function Samples = getSamples(max, percentage)Samples = find(rand(1, max) < percentage);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -