⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ga_climbing.c

📁 关于遗传算法的一些见地。特别是关于简单遗传程序设计的实现。
💻 C
字号:
/**********************************************************************  ga_climbing.c **********************************************************************  ga_climbing - Hill climbing algorithms for comparison and search.  Copyright ©2002-2005, Stewart Adcock <stewart@linux-domain.com>  All rights reserved.  The latest version of this program should be available at:  http://gaul.sourceforge.net/  This program is free software; you can redistribute it and/or modify  it under the terms of the GNU General Public License as published by  the Free Software Foundation; either version 2 of the License, or  (at your option) any later version.  Alternatively, if your project  is incompatible with the GPL, I will probably agree to requests  for permission to use the terms of any other license.  This program is distributed in the hope that it will be useful, but  WITHOUT ANY WARRANTY WHATSOEVER.  A full copy of the GNU General Public License should be in the file  "COPYING" provided with this distribution; if not, see:  http://www.gnu.org/ **********************************************************************  Synopsis:     Hill climbing algorithms for comparison and local		search.  The available functions are		ga_next_ascent_hillclimbing(), which modifies each		allele in turn until the termination criteria are		achieve, and ga_random_ascent_hillclimbing(), which		modifies randomly selected alleles. **********************************************************************/#include "gaul/ga_climbing.h"/**********************************************************************  ga_population_set_hillclimbing_parameters()  synopsis:     Sets the hill climbing parameters for a population.  parameters:  return:  last updated: 17 Oct 2002 **********************************************************************/void ga_population_set_hillclimbing_parameters( population              *pop,                                      GAmutate_allele		mutate_allele)  {  if ( !pop ) die("Null pointer to population structure passed.");  if ( !mutate_allele ) die("Null pointer to GAmutate_allele callback passed.");  plog( LOG_VERBOSE,        "Population's hill-climbing parameters: " );  if (pop->climbing_params == NULL)    pop->climbing_params = s_malloc(sizeof(ga_climbing_t));  pop->climbing_params->mutate_allele = mutate_allele;  return;  }/**********************************************************************  ga_random_ascent_hillclimbing()  synopsis:	Performs optimisation on the passed entity by using the  		random ascent hill climbing protocol.  The fitness		evaluations are performed using the standard evaluation		callback mechanism.		The passed entity will have it's data overwritten.  The		remainder of the population will be let untouched.		Note that it is safe to pass a NULL initial structure,		in which case a random starting structure wil be		generated, however the final solution will not be		available to the caller in any obvious way.  parameters:  return:  last updated:	18 Feb 2005 **********************************************************************/int ga_random_ascent_hillclimbing(	population		*pop,					entity			*best,					const int		max_iterations )  {  int		iteration=0;		/* Current iteration number. */  entity	*putative;		/* Current solution. */  entity	*tmp;			/* Used to swap working solutions. */  int		chromo_id;		/* Chromosome number. */  int		allele_id;		/* Allele number. *//* Checks. */  if (!pop) die("NULL pointer to population structure passed.");  if (!pop->evaluate) die("Population's evaluation callback is undefined.");  if (!pop->climbing_params)    die("ga_population_set_hillclimbing_params(), or similar, must be used prior to ga_random_ascent_hillclimbing().");  if (!pop->climbing_params->mutate_allele)    die("Population's allele mutation callback is undefined.");/* Prepare working entity. */  putative = ga_get_free_entity(pop);/* Do we need to generate a random starting solution? */  if (!best)    {    plog(LOG_VERBOSE, "Will perform hill climbing with random starting solution.");    best = ga_get_free_entity(pop);    ga_entity_seed(pop, best);    }  else    {       plog(LOG_VERBOSE, "Will perform hill climbing with specified starting solution.");    }/* * Ensure that initial solution is scored. */  if (best->fitness==GA_MIN_FITNESS) pop->evaluate(pop, best);  plog( LOG_VERBOSE,        "Prior to the first iteration, the current solution has fitness score of %f",        best->fitness );/* * Do all the iterations: * * Stop when (a) max_iterations reached, or *           (b) "pop->iteration_hook" returns FALSE. */  while ( (pop->iteration_hook?pop->iteration_hook(iteration, best):TRUE) &&           iteration<max_iterations )    {    iteration++;/* * Generate and score a new solution. */    chromo_id = random_int(pop->num_chromosomes);    allele_id = random_int(pop->len_chromosomes);    pop->climbing_params->mutate_allele(pop, best, putative, chromo_id, allele_id);    pop->mutate(pop, best, putative);    pop->evaluate(pop, putative);/* * Decide whether this new solution should be selected or discarded based * on the relative fitnesses. */  if ( putative->fitness > best->fitness )    {    tmp = best;    best = putative;    putative = tmp;    }/* * Use the iteration callback. */    plog( LOG_VERBOSE,          "After iteration %d, the current solution has fitness score of %f",          iteration,          best->fitness );    }	/* Iteration loop. *//* * Cleanup. */  ga_entity_dereference(pop, putative);  return iteration;  }/**********************************************************************  ga_next_ascent_hillclimbing()  synopsis:	Performs optimisation on the passed entity by using the  		next ascent hill climbing protocol.  The fitness		evaluations are performed using the standard evaluation		callback mechanism.		The passed entity will have it's data overwritten.  The		remainder of the population will be let untouched.		Note that it is safe to pass a NULL initial structure,		in which case a random starting structure wil be		generated, however the final solution will not be		available to the caller in any obvious way.  parameters:  return:  last updated:	18 Feb 2005 **********************************************************************/int ga_next_ascent_hillclimbing(	population		*pop,					entity			*best,					const int		max_iterations )  {  int		iteration=0;		/* Current iteration number. */  entity	*putative;		/* Current solution. */  entity	*tmp;			/* Used to swap working solutions. */  int		chromo_id=0;		/* Chromosome number. */  int		allele_id=0;		/* Allele number. *//* Checks. */  if (!pop) die("NULL pointer to population structure passed.");  if (!pop->evaluate) die("Population's evaluation callback is undefined.");  if (!pop->climbing_params)    die("ga_population_set_hillclimbing_params(), or similar, must be used prior to ga_next_ascent_hillclimbing().");  if (!pop->climbing_params->mutate_allele)    die("Population's allele mutation callback is undefined.");/* Prepare working entity. */  putative = ga_get_free_entity(pop);/* Do we need to generate a random starting solution? */  if (!best)    {    plog(LOG_VERBOSE, "Will perform hill climbing with random starting solution.");    best = ga_get_free_entity(pop);    ga_entity_seed(pop, best);    }  else    {       plog(LOG_VERBOSE, "Will perform hill climbing with specified starting solution.");    }/* * Ensure that initial solution is scored. */  if (best->fitness==GA_MIN_FITNESS) pop->evaluate(pop, best);  plog( LOG_VERBOSE,        "Prior to the first iteration, the current solution has fitness score of %f",        best->fitness );/* * Do all the iterations: * * Stop when (a) max_iterations reached, or *           (b) "pop->iteration_hook" returns FALSE. */  while ( (pop->iteration_hook?pop->iteration_hook(iteration, best):TRUE) &&           iteration<max_iterations )    {    iteration++;    allele_id++;    if (allele_id >= pop->len_chromosomes)      {      allele_id = 0;      chromo_id++;      if (chromo_id >= pop->num_chromosomes)        chromo_id = 0;      }/* * Generate and score a new solution. */    pop->climbing_params->mutate_allele(pop, best, putative, chromo_id, allele_id);    pop->evaluate(pop, putative);/* * Decide whether this new solution should be selected or discarded based * on the relative fitnesses. */  if ( putative->fitness > best->fitness )    {    tmp = best;    best = putative;    putative = tmp;    }/* * Use the iteration callback. */    plog( LOG_VERBOSE,          "After iteration %d, the current solution has fitness score of %f",          iteration,          best->fitness );    }	/* Iteration loop. *//* * Cleanup. */  ga_entity_dereference(pop, putative);  return iteration;  }

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -