📄 hxrsmp2.cpp
字号:
/* ***** BEGIN LICENSE BLOCK *****
* Version: RCSL 1.0/RPSL 1.0
*
* Portions Copyright (c) 1995-2002 RealNetworks, Inc. All Rights Reserved.
*
* The contents of this file, and the files included with this file, are
* subject to the current version of the RealNetworks Public Source License
* Version 1.0 (the "RPSL") available at
* http://www.helixcommunity.org/content/rpsl unless you have licensed
* the file under the RealNetworks Community Source License Version 1.0
* (the "RCSL") available at http://www.helixcommunity.org/content/rcsl,
* in which case the RCSL will apply. You may also obtain the license terms
* directly from RealNetworks. You may not use this file except in
* compliance with the RPSL or, if you have a valid RCSL with RealNetworks
* applicable to this file, the RCSL. Please see the applicable RPSL or
* RCSL for the rights, obligations and limitations governing use of the
* contents of the file.
*
* This file is part of the Helix DNA Technology. RealNetworks is the
* developer of the Original Code and owns the copyrights in the portions
* it created.
*
* This file, and the files included with this file, is distributed and made
* available on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND REALNETWORKS HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
*
* Technology Compatibility Kit Test Suite(s) Location:
* http://www.helixcommunity.org/content/tck
*
* Contributor(s):
*
* ***** END LICENSE BLOCK ***** */
#include "hxcom.h"
#include "hxtypes.h"
#include "hxresult.h"
#ifdef _WINDOWS
#include <windows.h>
#endif
#include "hlxclib/string.h"
#include "timeval.h"
#include "ihxpckts.h"
#include "hxfiles.h"
#include "hxengin.h"
#include "hxcore.h"
#include "hxprefs.h"
#include "hxtick.h"
#ifdef _MACINTOSH
#include "hxmm.h"
#endif
#include "hxthread.h"
//#include "resampl2.h"
#include "hxausvc.h"
#include "hxrsmp2.h"
#include "hxheap.h"
#ifdef _DEBUG
#undef HX_THIS_FILE
static const char HX_THIS_FILE[] = __FILE__;
#endif
// HXScheduler...
HXCDQualityResampler::HXCDQualityResampler()
: m_lRefCount (0)
, m_pResampler(NULL)
, m_audioChannelConversion(AUDIO_CHANNEL_NONE)
, m_audioSampleConversion(AUDIO_SAMPLE_NONE)
, m_ulSamplesSaved(0)
, m_ulSamplesFixed(0)
, m_ulBytesFixed(0)
, m_pBPS8To16Out(NULL)
{
}
HXCDQualityResampler::~HXCDQualityResampler()
{
Close();
}
/*
* IUnknown methods
*/
/////////////////////////////////////////////////////////////////////////
// Method:
// IUnknown::QueryInterface
// Purpose:
// Implement this to export the interfaces supported by your
// object.
//
STDMETHODIMP HXCDQualityResampler::QueryInterface(REFIID riid, void** ppvObj)
{
QInterfaceList qiList[] =
{
{ GET_IIDHANDLE(IID_IHXAudioResampler), (IHXAudioResampler*)this },
{ GET_IIDHANDLE(IID_IUnknown), (IUnknown*)(IHXAudioResampler*)this },
};
return ::QIFind(qiList, QILISTSIZE(qiList), riid, ppvObj);
}
/////////////////////////////////////////////////////////////////////////
// Method:
// IUnknown::AddRef
// Purpose:
// Everyone usually implements this the same... feel free to use
// this implementation.
//
STDMETHODIMP_(ULONG32) HXCDQualityResampler::AddRef()
{
return InterlockedIncrement(&m_lRefCount);
}
/////////////////////////////////////////////////////////////////////////
// Method:
// IUnknown::Release
// Purpose:
// Everyone usually implements this the same... feel free to use
// this implementation.
//
STDMETHODIMP_(ULONG32) HXCDQualityResampler::Release()
{
if (InterlockedDecrement(&m_lRefCount) > 0)
{
return m_lRefCount;
}
delete this;
return 0;
}
/*
* IHXResampler methods
*/
STDMETHODIMP_(UINT32)
HXCDQualityResampler::Resample(UINT16* pInput,
UINT32 ulInputBytes,
UINT16* pOutput)
{
UINT32 ulOutputBytes = 0;
UINT32 ulSamplesIn = 0;
UINT32 ulFramesIn = 0;
UINT32 ulSamplesOut = 0;
UINT32 ulBytesSaved = 0;
UINT32 ulOut = 0;
ulSamplesIn = (ulInputBytes * 8) / m_inAudioFormat.uBitsPerSample;
ulSamplesOut = ulSamplesIn;
ulOutputBytes = ulInputBytes;
// channel conversion first(STEREO -> MONO)
// MONO -> STEREO is handled by the caller(AudioStream)
if (AUDIO_CHANNEL_DOWN == m_audioChannelConversion)
{
Downmix16((short*)pInput, ulSamplesIn);
// half the output samples after channel conversion
ulSamplesIn /= 2;
ulSamplesOut = ulSamplesIn;
}
// resampler's output always be 16bits
if (m_inAudioFormat.uBitsPerSample == 8 && m_outAudioFormat.uBitsPerSample == 16)
{
ulFramesIn = ulSamplesIn / m_inAudioFormat.uChannels;
ulOut = m_inAudioFormat.uChannels * 2 * ulFramesIn;
if (!m_pBPS8To16Out)
{
m_pBPS8To16Out = (short*)new char[ulOut];
}
BPS8To16((short*)pInput, ulInputBytes, (short*)m_pBPS8To16Out, ulOut);
pInput = (UINT16*)m_pBPS8To16Out;
}
if (m_pResampler)
{
if (m_ulSamplesSaved)
{
ulBytesSaved = m_ulSamplesSaved * m_outAudioFormat.uBitsPerSample / 8;
HX_ASSERT(ulBytesSaved < m_ulBytesFixed);
if (ulBytesSaved >= m_ulBytesFixed) ulBytesSaved = m_ulBytesFixed;
::memcpy(pOutput, (UCHAR*)pOutput+m_ulBytesFixed, ulBytesSaved); /* Flawfinder: ignore */
}
ulSamplesOut = m_pResampler->Resample((short*)pInput,
ulSamplesIn,
(short*)((UCHAR*)pOutput + ulBytesSaved));
m_ulSamplesSaved += ulSamplesOut - m_ulSamplesFixed;
ulOutputBytes = m_ulBytesFixed;
}
else
{
ulOutputBytes = (ulSamplesOut * m_outAudioFormat.uBitsPerSample) / 8;
HX_ASSERT(ulOutputBytes < m_ulBytesFixed);
if (ulOutputBytes >= m_ulBytesFixed) ulOutputBytes = m_ulBytesFixed;
::memcpy(pOutput, pInput, ulOutputBytes); /* Flawfinder: ignore */
}
return ulOutputBytes;
}
STDMETHODIMP_(UINT32)
HXCDQualityResampler::Requires(UINT32 outputFrames)
{
UINT32 inputFrames = 0;
UINT32 ulSamplesRequired = 0;
// we only need to resample half of the output frames
// since the caller will do the MONO -> STEREO channel conversion
if (AUDIO_CHANNEL_UP == m_audioChannelConversion)
{
outputFrames /= 2;
}
// take into account of the extra samples from the last Resample()
ulSamplesRequired = outputFrames * m_outAudioFormat.uChannels - m_ulSamplesSaved;
m_ulSamplesFixed = outputFrames * m_outAudioFormat.uChannels;
m_ulBytesFixed = (outputFrames * m_outAudioFormat.uChannels * m_outAudioFormat.uBitsPerSample) / 8;;
if (m_pResampler)
{
inputFrames = m_pResampler->GetMinInput(ulSamplesRequired) / m_inAudioFormat.uChannels;
}
else
{
inputFrames = ulSamplesRequired / m_inAudioFormat.uChannels;
}
// we need to double the input frames for STEREO -> MONO channel
// conversion
if (AUDIO_CHANNEL_DOWN == m_audioChannelConversion)
{
inputFrames *= 2;
}
return inputFrames;
}
HX_RESULT
HXCDQualityResampler::Init(HXAudioFormat inAudioFormat,
REF(HXAudioFormat) outAudioFormat)
{
HX_RESULT rc = HXR_OK;
CopyAudioFormat(inAudioFormat, m_inAudioFormat);
CopyAudioFormat(outAudioFormat, m_outAudioFormat);
INT32 actualMaxSamplesIn = (m_inAudioFormat.uMaxBlockSize * 8) / m_inAudioFormat.uBitsPerSample;
INT32 actualMaxSamplesOut = 0;
INT32 actualMaxInputBytes = m_inAudioFormat.uMaxBlockSize;
INT32 actualResamplerChannel = m_inAudioFormat.uChannels;
// cleanup the mess
Close();
// this wrapper class will do the STEREO -> MONO channel conversion
// MONO -> STEREO channel conversion will be done by the caller
if (m_outAudioFormat.uChannels > m_inAudioFormat.uChannels)
{
m_audioChannelConversion = AUDIO_CHANNEL_UP;
}
else if (m_outAudioFormat.uChannels < m_inAudioFormat.uChannels)
{
m_audioChannelConversion = AUDIO_CHANNEL_DOWN;
actualMaxInputBytes /= 2;
actualResamplerChannel = m_outAudioFormat.uChannels;
}
else
{
m_audioChannelConversion = AUDIO_CHANNEL_NONE;
}
if (m_outAudioFormat.ulSamplesPerSec == m_inAudioFormat.ulSamplesPerSec)
{
m_audioSampleConversion = AUDIO_SAMPLE_NONE;
}
else
{
m_audioSampleConversion = AUDIO_SAMPLE_NEEDED;
}
if (AUDIO_SAMPLE_NONE != m_audioSampleConversion)
{
if (HXR_OK == RAExactResampler::Create(&m_pResampler,
m_inAudioFormat.ulSamplesPerSec,
m_outAudioFormat.ulSamplesPerSec,
actualResamplerChannel,
RAExactResampler::_INT16)) // 16bit per sample output
{
actualMaxSamplesOut = m_pResampler->GetMaxOutput(actualMaxSamplesIn);
}
else
{
HX_DELETE(m_pResampler);
rc = HXR_FAILED;
}
}
else
{
actualMaxSamplesOut = actualMaxSamplesIn;
}
outAudioFormat.uMaxBlockSize = m_outAudioFormat.uMaxBlockSize = (actualMaxSamplesOut * m_outAudioFormat.uBitsPerSample) / 8;
return rc;
}
void
HXCDQualityResampler::Downmix16(INT16* pIn, UINT32 nSamplesIn)
{
UINT32 i ;
for (i = 0 ; i < nSamplesIn / 2 ; i++)
{
INT32 t = (INT32)pIn[2*i] + (INT32)pIn[2*i+1] ;
pIn[i] = (INT16)(t>>1);
}
}
void
HXCDQualityResampler::BPS8To16(INT16* pInput, UINT32 ulBytesIn, INT16* pOutput, UINT32& ulBytesOut)
{
long inputFrames = ulBytesIn / (m_inAudioFormat.uBitsPerSample/8) / m_inAudioFormat.uChannels;
long n = 0;
if (1 == m_outAudioFormat.uChannels)
{
unsigned char* pIn = (unsigned char*) pInput;
for (n = 0; n < inputFrames; n++)
{
pOutput[n] = (short) (((short)*pIn++ - 128) << 8);
}
}
else if (2 == m_outAudioFormat.uChannels)
{
unsigned char* pIn = (unsigned char*) pInput;
long m = 0;
for (n = 0; n < inputFrames; n++ )
{
pOutput[m] = (short) (((short)*pIn++ - 128) << 8);
m++;
pOutput[m] = (short) (((short)*pIn++ - 128) << 8);
m++;
}
}
ulBytesOut = m_inAudioFormat.uChannels * 2 * inputFrames;
return;
}
void
HXCDQualityResampler::CopyAudioFormat(HXAudioFormat from, REF(HXAudioFormat) to)
{
to.uChannels = from.uChannels;
to.uBitsPerSample = from.uBitsPerSample;
to.ulSamplesPerSec = from.ulSamplesPerSec;
to.uMaxBlockSize = from.uMaxBlockSize;
}
void
HXCDQualityResampler::Close()
{
HX_VECTOR_DELETE(m_pBPS8To16Out);
HX_DELETE(m_pResampler);
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -